Molecular and Cellular Biochemistry

, Volume 412, Issue 1–2, pp 281–288 | Cite as

Smad signal pathway regulates angiogenesis via endothelial cell in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model

  • Shiyu Lin
  • Jing Xie
  • Tao Gong
  • Sirong Shi
  • Tao Zhang
  • Na Fu
  • Yunfeng Lin


Co-implantation of adipose-derived stromal cells (ASCs) and endothelial cells (ECs) can markedly expedite the formation of functional microvascular beds and provides possible methods for cell-based revascularization therapies to treat various diseases. Furthermore, we investigated the role of TGFβ/Smad signaling pathway for angiogenesis in a three-dimensional (3D) collagen gel model established in vitro with co-culture between ASCs and ECs. We found that angiogenesis was attenuated in the co-culture gels after inhibition of ALK5/Smad2/3 with SB431542. Genes coding for VEGF-A, VEGF-B, VE-ca, FGF-1, PDGF, BMP-4, and BMP-7 were significantly reduced in both mono-cultured and co-cultured ECs. Furthermore, the decrease in co-cultured ECs was prominent relative to mono-cultured ECs. Taken together, these findings suggest that in the co-culture between ASCs and ECs, TGFβ/Smad signal pathway regulates angiogenesis via ECs; moreover, the findings that the co-cultured ECs were regulated more significantly than mono-cultured ECs suggest that suppression of Smad signal pathway may regulate the paracrine secretion of ASCs to further modulate angiogenesis of ECs.


Smad signal pathway Angiogenesis Endothelial cells Adipose stem cells 



This work was funded by the National Natural Science Foundation of China (81470721, 31170929), Sichuan Province Youth Science and Technology Innovation Team (2014TD0001).


  1. 1.
    Kolonin MG, Evans KW, Mani SA, Gomer RH (2012) Alternative origins of stroma in normal organs and disease. Stem Cell Res 8:312–323PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Park IS, Kang JA, Kang J, Rhie JW, Kim SH (2014) Therapeutic effect of human adipose-derived stromal cells cluster in rat hind-limb ischemia. Anat Rec (Hoboken) 297:2289–2298CrossRefGoogle Scholar
  3. 3.
    Abdollahi H, Harris LJ, Zhang P, McIlhenny S, Srinivas V, Tulenko T, DiMuzio PJ (2011) The role of hypoxia in stem cell differentiation and therapeutics. J Surg Res 165:112–117PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332:370–379PubMedCrossRefGoogle Scholar
  5. 5.
    Shen J, Li S, Chen D (2014) TGF-beta signaling and the development of osteoarthritis. Bone Res 2:14002PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM (2015) TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 3:15005PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lei C, Zhou XL, Pang Y, Mao YY, Lu XX, Li MJ, Zhang J (2015) TGF-beta signalling prevents pancreatic beta cell death after proliferation. Cell Prolif 48:356–362PubMedCrossRefGoogle Scholar
  9. 9.
    Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43PubMedCrossRefGoogle Scholar
  10. 10.
    Attisano L, Carcamo J, Ventura F, Weis FMB, Massague J, Wrana JL (1993) Identification of human activin and tgf-beta type-I receptors that form heteromeric kinase complexes with type-II receptors. Cell 75:671–680PubMedCrossRefGoogle Scholar
  11. 11.
    Lux A, Attisano L, Marchuk DA (1999) Assignment of transforming growth factor beta 1 and beta 3 and a third new ligand to the type I receptor ALK-1. J Biol Chem 274:9984–9992PubMedCrossRefGoogle Scholar
  12. 12.
    Lebrin F, Goumans MJ, Jonker L, Carvalho RLC, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23:4018–4028PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFP/ALK5 signaling. Mol Cell 12:817–828PubMedCrossRefGoogle Scholar
  14. 14.
    Itoh F, Itoh S, Carvalho RLC, Adachi T, Ema M, Goumans MJ, Larsson J, Karlsson S, Takahashi S, Mummery CL, ten Dijke P, Kato M (2009) Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Lab Invest 89:800–810PubMedCrossRefGoogle Scholar
  15. 15.
    Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP, Heer J, Kwon C, Lehr R, Mathur A, Olson BA, Weinstock J, Laping NJ (2002) Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5). J Med Chem 45:999–1001PubMedCrossRefGoogle Scholar
  17. 17.
    Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74PubMedCrossRefGoogle Scholar
  18. 18.
    Cun X, Xie J, Lin S, Fu N, Deng S, Xie Q, Zhong J, Lin Y (2015) Gene profile of soluble growth factors involved in angiogenesis, in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model. Cell Prolif 48:405–412PubMedCrossRefGoogle Scholar
  19. 19.
    Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260PubMedCrossRefGoogle Scholar
  20. 20.
    Tobita M, Orbay H, Mizuno H (2011) Adipose-derived stem cells: current findings and future perspectives. Discov Med 11:160–170PubMedGoogle Scholar
  21. 21.
    Salgado AJ, Reis RL, Sousa NJ, Gimble JM (2010) Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 5:103–110PubMedCrossRefGoogle Scholar
  22. 22.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309PubMedCrossRefGoogle Scholar
  23. 23.
    Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–1312PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109:227–241CrossRefGoogle Scholar
  25. 25.
    Giannotta M, Trani M, Dejana E (2013) VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 26:441–454PubMedCrossRefGoogle Scholar
  26. 26.
    Kilvaer TK, Valkov A, Sorbye SW, Smeland E, Bremnes RM, Busund LT, Donnem T (2011) Fibroblast growth factor 2 orchestrates angiogenic networking in non-GIST STS patients. J Transl Med 9:104PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523PubMedCrossRefGoogle Scholar
  28. 28.
    Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL (2011) Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater 7:133–143PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887PubMedCrossRefGoogle Scholar
  30. 30.
    Laestander C, Engstrom W (2014) Role of fibroblast growth factors in elicitation of cell responses. Cell Prolif 47:3–11PubMedCrossRefGoogle Scholar
  31. 31.
    Cao Y, Cao R, Hedlund EM (2008) Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med (Berl) 86:785–789CrossRefGoogle Scholar
  32. 32.
    Su N, Jin M, Chen L (2014) Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res 2:24CrossRefGoogle Scholar
  33. 33.
    Kim JM, Kang SW, Shin SM, Su Kim D, Choi KK, Kim EC, Kim SY (2014) Inhibition of matrix metalloproteinases expression in human dental pulp cells by all-trans retinoic acid. Int J Oral Sci 6:150–153PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tate CM, Pallini R, Ricci-Vitiani L, Dowless M, Shiyanova T, D’Alessandris GQ, Morgante L, Giannetti S, Larocca LM, di Martino S, Rowlinson SW, De Maria R, Stancato L (2012) A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death Differ 19:1644–1654PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shin JA, Lim SM, Jeong SI, Kang JL, Park EM (2014) Noggin improves ischemic brain tissue repair and promotes alternative activation of microglia in mice. Brain Behav Immun 40:143–154PubMedCrossRefGoogle Scholar
  36. 36.
    Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J (2013) Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 24:297–310PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shiyu Lin
    • 1
  • Jing Xie
    • 1
  • Tao Gong
    • 1
  • Sirong Shi
    • 1
  • Tao Zhang
    • 1
  • Na Fu
    • 1
  • Yunfeng Lin
    • 1
  1. 1.State Key Laboratory of Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduPeople’s Republic of China

Personalised recommendations