Molecular and Cellular Biochemistry

, Volume 412, Issue 1–2, pp 131–139 | Cite as

Saw1 localizes to repair sites but is not required for recruitment of Rad10 to repair intermediates bearing short non-homologous 3′ flaps during single-strand annealing in S. cerevisiae

  • Melina Mardirosian
  • Linette Nalbandyan
  • Aaron D. Miller
  • Claire Phan
  • Eric P. Kelson
  • Paula L. Fischhaber


SAW1 is required for efficient removal by the Rad1–Rad10 nuclease of 3′ non-homologous DNA ends (flaps) formed as intermediates during two modes of double-strand break (DSB) repair in S. cerevisiae, single-strand annealing (SSA) and synthesis-dependent strand annealing. Saw1 was shown in vitro to bind flaps with high affinity, but displayed diminished affinity when flaps were short (<30 deoxynucleotides [nt]), consistent with it not being required for short flap cleavage. Accordingly, this study, using in vivo fluorescence microscopy showed that SAW1 was not required for recruitment of Rad10-YFP to DNA DSBs during their repair by SSA when the flaps were ~10 nt. In contrast, recruitment of Rad10-YFP to DSBs when flaps were ~500 nt did require SAW1 in G1 phase of cell cycle. Interestingly, we observed a substantial increase in colocalization of Saw1-CFP and Rad10-YFP at DSBs when short flaps were formed during repair, especially in G1, indicating significant recruitment of Saw1 despite there being no requirement for Saw1 to recruit Rad10. Saw1-CFP was seldom observed at DSBs without Rad10-YFP. Together, these results support a model in which Saw1 and Rad1–Rad10 are recruited as a complex to short and long flaps in all phases of cell cycle, but that Saw1 is only required for recruitment of Rad1–Rad10 to DSBs when long flaps are formed in G1.


Saw1 Rad10 Double-strand break repair Single-strand annealing 



We thank Drs. Adam Bailis and Michael Lisby for critical reading of the manuscript and Jeff Wagner and Matt Labron from UCLA for gamma irradiator access. This work was supported by NIH grants SC3GM093858 (PLF) and S06GM48680 (EPK) and a CSUPERB Presidents’ Commission Scholarship (MM).

Supplementary material

11010_2015_2616_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)
11010_2015_2616_MOESM2_ESM.pdf (365 kb)
Supplementary material 1 (PDF 379 kb)


  1. 1.
    Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2005) DNA repair and mutagenesis, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  2. 2.
    Mehta A, Haber JE (2014) Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6(9):a016428. doi: 10.1101/cshperspect.a016428 PubMedCrossRefGoogle Scholar
  3. 3.
    Symington LS, Rothstein R, Lisby M (2014) Mechanisms and regulation of mitotic recombination in Saccharomyces cerevisiae. Genetics 198(3):795–835. doi: 10.1534/genetics.114.166140 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mieczkowski PA, Lemoine FJ, Petes TD (2006) Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 5(9–10):1010–1020. doi: 10.1016/j.dnarep.2006.05.027 CrossRefGoogle Scholar
  5. 5.
    Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66(4):630–670. doi: 10.1128/MMBR.66.4.630-670.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sugawara N, Paques F, Colaiacovo M, Haber JE (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 94(17):9214–9219. doi: 10.1073/pnas.94.17.9214 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y (1996) Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 13(2):245–247. doi: 10.1038/ng0696-245 PubMedCrossRefGoogle Scholar
  8. 8.
    Strout MP, Marcucci G, Bloomfield CD, Caligiuri MA (1998) The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc Natl Acad Sci USA 95(5):2390–2395. doi: 10.1073/pnas.95.5.2390 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Li F, Dong J, Pan X, Oum JH, Boeke JD, Lee SE (2008) Microarray-based genetic screen defines SAW1, a gene required for Rad1/Rad10-dependent processing of recombination intermediates. Mol Cell 30(3):325–335. doi: 10.1016/j.molcel.2008.02.028 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sarangi P, Altmannova V, Holland C, Bartosova Z, Hao F, Anrather D, Ammerer G, Lee SE, Krejci L, Zhao X (2014) A versatile scaffold contributes to damage survival via sumoylation and nuclease interactions. Cell Rep 9(1):143–152. doi: 10.1016/j.celrep.2014.08.054 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Li F, Dong J, Eichmiller R, Holland C, Minca E, Prakash R, Sung P, Yong Shim E, Surtees JA, Eun Lee S (2013) Role of Saw1 in Rad1/Rad10 complex assembly at recombination intermediates in budding yeast. EMBO J 32(3):461–472. doi: 10.1038/emboj.2012.345 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Diamante G, Phan C, Celis AS, Krueger J, Kelson EP, Fischhaber PL (2014) Saw1 is required for SDSA double-strand break repair in S. cerevisiae. Biochem Biophys Res Commun 445:602–607. doi: 10.1016/j.bbrc.2014.02.048 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ivanov EL, Haber JE (1995) RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 15(4):2245–2251PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bastin-Shanower SA, Fricke WM, Mullen JR, Brill SJ (2003) The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol Cell Biol 23(10):3487–3496. doi: 10.1128/MCB.23.10.3487-3496.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Davies AA, Friedberg EC, Tomkinson AE, Wood RD, West SC (1995) Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J Biol Chem 270(42):24638–24641. doi: 10.1074/jbc.270.42.24638 PubMedCrossRefGoogle Scholar
  16. 16.
    Paques F, Haber JE (1997) Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17(11):6765–6771PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lisby M, Mortensen UH, Rothstein R (2003) Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5(6):572–577. doi: 10.1038/ncb997 PubMedCrossRefGoogle Scholar
  18. 18.
    Barlow JH, Lisby M, Rothstein R (2008) Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30(1):73–85PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Moore DM, Karlin J, Gonzalez-Barrera S, Mardiros A, Lisby M, Doughty A, Gilley J, Rothstein R, Friedberg EC, Fischhaber PL (2009) Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae. Nucleic Acids Res 37(19):6429–6438. doi: 10.1093/nar/gkp709 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118(6):699–713. doi: 10.1016/j.cell.2004.08.015 PubMedCrossRefGoogle Scholar
  21. 21.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \varDelta \varDelta C_{\text{T}} }}\) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 PubMedCrossRefGoogle Scholar
  22. 22.
    Taylor JR (1982) An introduction to error analysis, 1st edn. University Science Books, Mill HillGoogle Scholar
  23. 23.
    Karlin J, Fischhaber PL (2013) Rad51 ATP binding but not hydrolysis is required to recruit Rad10 in synthesis-dependent strand annealing in S. cerevisiae. Adv Biol Chem 3:295–303. doi: 10.4236/abc.2013.33033 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Karathanasis E, Wilson TE (2002) Enhancement of Saccharomyces cerevisiae end-joining efficiency by cell growth stage but not by impairment of recombination. Genetics 161(3):1015–1027PubMedPubMedCentralGoogle Scholar
  25. 25.
    Mansour WY, Schumacher S, Rosskopf R, Rhein T, Schmidt-Petersen F, Gatzemeier F, Haag F, Borgmann K, Willers H, Dahm-Daphi J (2008) Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 36(12):4088–4098. doi: 10.1093/nar/gkn347 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mozlin AM, Fung CW, Symington LS (2008) Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination. Genetics 178(1):113–126. doi: 10.1534/genetics.107.082677 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bartsch S, Kang LE, Symington LS (2000) RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol Cell Biol 20(4):1194–1205. doi: 10.1128/MCB.20.4.1194-1205.2000 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56(4):619–630. doi: 10.1016/0092-8674(89)90584-9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryCalifornia State University NorthridgeNorthridgeUSA

Personalised recommendations