Advertisement

Molecular and Cellular Biochemistry

, Volume 412, Issue 1–2, pp 59–72 | Cite as

Effects of ageing on expression of the muscle-specific E3 ubiquitin ligases and Akt-dependent regulation of Foxo transcription factors in skeletal muscle

  • Akira Wagatsuma
  • Masataka Shiozuka
  • Yuzo Takayama
  • Takayuki Hoshino
  • Kunihiko Mabuchi
  • Ryoichi Matsuda
Article

Abstract

Controversy exists as to whether the muscle-specific E3 ubiquitin ligases MAFbx and MuRF1 are transcriptionally upregulated in the process of sarcopenia. In the present study, we investigated the effects of ageing on mRNA/protein expression of muscle-specific E3 ubiquitin ligases and Akt/Foxo signalling in gastrocnemius muscles of female mice. Old mice exhibited a typical sarcopenic phenotype, characterized by loss of muscle mass and strength, decreased amount of myofibrillar proteins, incidence of aberrant muscle fibres, and genetic signature to sarcopenia. Activation levels of Akt were lower in adult and old mice than in young mice. Consequently, Akt-mediated phosphorylation levels of Foxo1 and Foxo3 proteins were decreased. Nuclear levels of Foxo1 and Foxo3 proteins showed an overall increasing trend in old mice. MAFbx mRNA expression was decreased in old mice relative to adult mice, whereas MuRF1 mRNA expression was less affected by ageing. At the protein level, MAFbx was less affected by ageing, whereas MuRF1 was increased in old mice relative to adult mice, with ubiquitin–protein conjugates being increased with ageing. In conclusion, we provided evidence for no mRNA upregulation of muscle-specific E3 ubiquitin ligases and disconnection between their expression and Akt/Foxo signalling in sarcopenic mice. Their different responsiveness to ageing may reflect different roles in sarcopenia.

Keywords

Ageing MAFbx MuRF1 Muscle wasting Sarcopenia 

Notes

Acknowledgments

This research was supported by MEXT (the Ministry of Education, Culture, Sports, Science and Technology) (Grant in Aid for Scientific Research (C), 25350882), Japan.

Compliance with ethical standards

Conflict of interest

The authors of this manuscript do not have any conflict of interest.

References

  1. 1.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708PubMedCrossRefGoogle Scholar
  2. 2.
    Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci 98:14440–14445PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45:2121–2129PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307:E469–E484PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Foletta VC, White LJ, Larsen AE, Léger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflug Arch 461:325–335CrossRefGoogle Scholar
  6. 6.
    Rosenberg IH (1989) Summary comments. Am J Clin Nutr 50:1231–1233Google Scholar
  7. 7.
    Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B (2010) Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 285:39597–39608PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ibebunjo C, Chick JM, Kendall T, Eash JK, Li C, Zhang Y, Vickers C, Wu Z, Clarke BA, Shi J, Cruz J, Fournier B, Brachat S, Gutzwiller S, Ma Q, Markovits J, Broome M, Steinkrauss M, Skuba E, Galarneau JR, Gygi SP, Glass DJ (2013) Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia. Mol Cell Biol 33:194–212PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength: a quantitative review. Front Physiol 3:260PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Edström E, Altun M, Hägglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci 61:663–674PubMedCrossRefGoogle Scholar
  11. 11.
    Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrphy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3 K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403PubMedCrossRefGoogle Scholar
  13. 13.
    Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14:83–97PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao Y, Wang Y, Zhu WG (2011) Applications of post-translational modifications of FoxO family proteins in biological functions. J Mol Cell Biol 3:276–282PubMedCrossRefGoogle Scholar
  15. 15.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868PubMedCrossRefGoogle Scholar
  16. 16.
    Rena G, Prescott AR, Guo S, Cohen P, Unterman TG (2001) Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targetting. Biochem J 354:605–612PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Léger B, Derave W, De Bock K, Hespel P, Russell AP (2008) Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 11:163–175PubMedCrossRefGoogle Scholar
  18. 18.
    Barns M, Gondro C, Tellam RL, Radley-Crabb HG, Grounds MD, Shavlakadze T (2014) Molecular analyses provide insight into mechanisms underlying sarcopenia and myofibre denervation in old skeletal muscles of mice. Int J Biochem Cell Biol 53:174–185PubMedCrossRefGoogle Scholar
  19. 19.
    Stefanetti RJ, Zacharewicz E, Della Gatta P, Garnham A, Russell AP, Lamon S (2014) Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise. Front Physiol 5:30PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wagner KR, Liu X, Chang X, Allen RE (2005) Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci 102:2519–2524PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wagatsuma A (2006) Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Exp Gerontol 41:49–54PubMedCrossRefGoogle Scholar
  22. 22.
    Zandy AJ, Lakhani S, Zheng T, Flavell RA, Bassnett S (2005) Role of the executioner caspases during lens development. J Biol Chem 280:30263–30272PubMedCrossRefGoogle Scholar
  23. 23.
    O’Driscoll C, Donovan M, Cotter TG (2006) Analysis of apoptotic and survival mediators in the early post-natal and mature retina. Exp Eye Res 83:1482–1492PubMedCrossRefGoogle Scholar
  24. 24.
    Jiang Y, Saavedra HI, Holloway MP, Leone G, Altura RA (2004) Aberrant regulation of survivin by the RB/E2F family of proteins. J Biol Chem 279:40511–40520PubMedCrossRefGoogle Scholar
  25. 25.
    Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP (2002) Physiological role of tumor necrosis factor alpha in traumatic muscle injury. FASEB J 16:1630–1632PubMedGoogle Scholar
  26. 26.
    Krüger M, Mennerich D, Fees S, Schäfer R, Mundlos S, Braun T (2001) Sonic hedgehog is a survival factor for hypaxial muscles during mouse development. Development 128:743–752PubMedGoogle Scholar
  27. 27.
    Guo Z, Boekhoudt GH, Boss JM (2003) Role of the intronic enhancer in tumor necrosis factor-mediated induction of manganous superoxide dismutase. J Biol Chem 278:23570–23578PubMedCrossRefGoogle Scholar
  28. 28.
    Schreiber SN, Knutti D, Brogli K, Uhlmann T, Kralli A (2003) The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J Biol Chem 278:9013–9018PubMedCrossRefGoogle Scholar
  29. 29.
    Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115:451–458PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Dimauro I, Pearson T, Caporossi D, Jackson MJ (2012) A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res Notes 5:513PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Solomon V, Goldberg AL (1996) Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271:26690–26697PubMedCrossRefGoogle Scholar
  32. 32.
    Wu M, Katta A, Gadde MK, Liu H, Kakarla SK, Fannin J, Paturi S, Arvapalli RK, Rice KM, Wang Y, Blough ER (2009) Aging-associated dysfunction of Akt/protein kinase B: S-nitrosylation and acetaminophen intervention. PLoS One 4:e6430PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Scheid MP, Marignani PA, Woodgett JR (2002) Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol 22:6247–6260PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8:440–450PubMedCrossRefGoogle Scholar
  35. 35.
    Deruisseau KC, Kavazis AN, Powers SK (2005) Selective downregulation of ubiquitin conjugation cascade mRNA occurs in the senescent rat soleus muscle. Exp Gerontol 40:526–531PubMedCrossRefGoogle Scholar
  36. 36.
    Edström E, Ulfhake B (2005) Sarcopenia is not due to lack of regenerative drive in senescent skeletal muscle. Aging Cell 4:65–77PubMedCrossRefGoogle Scholar
  37. 37.
    Baumgartner RN (2000) Body composition in healthy aging. Ann N Y Acad Sci 904:437–448PubMedCrossRefGoogle Scholar
  38. 38.
    Brack AS, Rando TA (2007) Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev 3:226–237PubMedCrossRefGoogle Scholar
  39. 39.
    Lu DX, Huang SK, Carlson BM (1997) Electron microscopic study of long-term denervated rat skeletal muscle. Anat Rec 248:355–365PubMedCrossRefGoogle Scholar
  40. 40.
    Ludatscher RM, Silbermann M, Gershon D, Reznick A (1985) Evidence of Schwann cell degeneration in the aging mouse motor end-plate region. Exp Gerontol 20:81–91PubMedCrossRefGoogle Scholar
  41. 41.
    Jang YC, Van Remmen H (2011) Age-associated alterations of the neuromuscular junction. Exp Gerontol 46:193–198PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Tamilselvan J, Jayaraman G, Sivarajan K, Panneerselvam C (2007) Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid. Free Radic Biol Med 43:1656–1669PubMedCrossRefGoogle Scholar
  43. 43.
    Whitman SA, Wacker MJ, Richmond SR, Godard MP (2005) Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflug Arch 450:437–446CrossRefGoogle Scholar
  44. 44.
    Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45:138–148PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Baker DJ, Hepple RT (2006) Elevated caspase and AIF gene expression correlate with progression of sarcopenia during aging in male F344BN rats. Exp Gerontol 41:1149–1156PubMedCrossRefGoogle Scholar
  46. 46.
    Eftimie R, Brenner HR, Buonanno A (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci 88:1349–1353PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143:35–45PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA (2003) Gene expression profile of aging in human muscle. Physiol Genomics 14:149–159PubMedCrossRefGoogle Scholar
  49. 49.
    Ebert SM, Dyle MC, Kunkel SD, Bullard SA, Bongers KS, Fox DK, Dierdorff JM, Foster ED, Adams CM (2012) Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J Biol Chem 287:27290–27301PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99PubMedCrossRefGoogle Scholar
  51. 51.
    Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci 106:20405–20410PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lam EW, Brosens JJ, Gomes AR, Koo CY (2013) Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer 13:482–495PubMedCrossRefGoogle Scholar
  53. 53.
    Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H (2011) Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 1(2):170–182CrossRefGoogle Scholar
  54. 54.
    Bollinger LM, Witczak CA, Houmard JA, Brault JJ (2014) SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner. Am J Physiol Cell Physiol 307:C278–C287PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech Ageing Dev 127:794–801PubMedCrossRefGoogle Scholar
  56. 56.
    Merritt EK, Stec MJ, Thalacker-Mercer A, Windham ST, Cross JM, Shelley DP, Craig Tuggle S, Kosek DJ, Kim JS, Bamman MM (2013) Heightened muscle inflammation susceptibility may impair regenerative capacity in aging humans. J Appl Physiol 115:937–948PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S (2007) Proteolytic gene expression differs at rest and after resistance exercise between young and old women. J Gerontol A Biol Sci Med Sci 62:1407–1412PubMedCrossRefGoogle Scholar
  58. 58.
    Wilson JM, Grant SC, Lee SR, Masad IS, Park YM, Henning PC, Stout JR, Loenneke JP, Arjmandi BH, Panton LB, Kim JS (2012) Beta-hydroxy-beta-methyl-butyrate blunts negative age-related changes in body composition, functionality and myofiber dimensions in rats. J Int Soc Sports Nutr 9:18PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Foletta VC, Prior MJ, Stupka N, Carey K, Segal DH, Jones S, Swinton C, Martin S, Cameron-Smith D, Walder KR (2009) NDRG2, a novel regulator of myoblast proliferation, is regulated by anabolic and catabolic factors. J Physiol 587:1619–1634PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Volpi E, Rasmussen BB (2013) Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J Gerontol A Biol Sci Med Sci 68:599–607PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Greig CA, Gray C, Rankin D, Young A, Mann V, Noble B, Atherton PJ (2011) Blunting of adaptive responses to resistance exercise training in women over 75y. Exp Gerontol 46:884–890PubMedCrossRefGoogle Scholar
  62. 62.
    Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CG, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano AL, Toniolo L, Larsson L, Maier AB, Muñoz-Cánoves P, Musarò A, Pende M, Reggiani C, Rizzuto R, Schiaffino S (2013) Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology 14:303–323PubMedCrossRefGoogle Scholar
  63. 63.
    White JR, Confides AL, Moore-Reed S, Hoch JM, Dupont-Versteegden EE (2015) Regrowth after skeletal muscle atrophy is impaired in aged rats, despite similar responses in signaling pathways. Exp Gerontol 64:17–32PubMedCrossRefGoogle Scholar
  64. 64.
    Williamson DL, Raue U, Slivka DR, Trappe S (2010) Resistance exercise, skeletal muscle FOXO3A, and 85-year-old women. J Gerontol A Biol Sci Med Sci 65:335–343PubMedCrossRefGoogle Scholar
  65. 65.
    Keefe AC, Lawson JA, Flygare SD, Fox ZD, Colasanto MP, Mathew SJ, Yandell M, Kardon G (2015) Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 6:7087PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Brack AS, Bildsoe H, Hughes SM (2005) Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 118:4813–4821PubMedCrossRefGoogle Scholar
  67. 67.
    Cai D, Lee KK, Li M, Tang MK, Chan KM (2004) Ubiquitin expression is up-regulated in human and rat skeletal muscles during aging. Arch Biochem Biophys 425:42–50PubMedCrossRefGoogle Scholar
  68. 68.
    Armstrong RB, Phelps RO (1984) Muscle fiber type composition of the rat hindlimb. Am J Anat 171:259–272PubMedCrossRefGoogle Scholar
  69. 69.
    Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6:376–385PubMedCrossRefGoogle Scholar
  70. 70.
    Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185:1083–1095PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Polge C, Heng AE, Jarzaguet M, Ventadour S, Claustre A, Combaret L, Béchet D, Matondo M, Uttenweiler-Joseph S, Monsarrat B, Attaix D, Taillandier D (2011) Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J 25:3790–3802PubMedCrossRefGoogle Scholar
  72. 72.
    Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13:92–101PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rudolf R, Bogomolovas J, Strack S, Choi KR, Khan MM, Wagner A, Brohm K, Hanashima A, Gasch A, Labeit D, Labeit S (2013) Regulation of nicotinic acetylcholine receptor turnover by MuRF1 connects muscle activity to endo/lysosomal and atrophy pathways. Age (Dordr) 35:1663–1674PubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27:1266–1276PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA (2005) Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280:2847–2856PubMedCrossRefGoogle Scholar
  76. 76.
    Jogo M, Shiraishi S, Tamura TA (2009) Identification of MAFbx as a myogenin-engaged F-box protein in SCF ubiquitin ligase. FEBS Lett 583:2715–2719PubMedCrossRefGoogle Scholar
  77. 77.
    Baehr LM, Tunzi M, Bodine SC (2014) Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Front Physiol 5:69PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol 303:C512–C529PubMedCrossRefGoogle Scholar
  79. 79.
    Paturi S, Gutta AK, Katta A, Kakarla SK, Arvapalli RK, Gadde MK, Nalabotu SK, Rice KM, Wu M, Blough E (2010) Effects of aging and gender on muscle mass and regulation of Akt-mTOR-p70s6 k related signaling in the F344BN rat model. Mech Ageing Dev 131:202–209PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Akira Wagatsuma
    • 1
  • Masataka Shiozuka
    • 2
  • Yuzo Takayama
    • 1
    • 3
  • Takayuki Hoshino
    • 1
  • Kunihiko Mabuchi
    • 1
  • Ryoichi Matsuda
    • 2
  1. 1.Department of Information Physics and Computing, Graduate School of Information Science and TechnologyThe University of TokyoTokyoJapan
  2. 2.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  3. 3.Biotechnology Research Institute for Drug DiscoveryNational Institute of Advanced Industrial Science and Technology (AIST)IbarakiJapan

Personalised recommendations