Molecular and Cellular Biochemistry

, Volume 411, Issue 1–2, pp 241–252 | Cite as

Dexamethasone promotes hypertrophy of H9C2 cardiomyocytes through calcineurin B pathway, independent of NFAT activation

  • K. N. Sangeetha
  • B. S. Lakshmi
  • S. Niranjali Devaraj


Metabolic syndrome-induced cardiac hypertrophy is a global concern leading to an increase in the morbidity and mortality of patients, with the signalling mechanism associated with them still unclear. The present study attempts to understand the metabolic syndrome-associated cardiac hypertrophy through an in vitro model using external stimuli well known for inducing metabolic disorders, i.e. dexamethasone (DEX), a synthetic glucocorticoid. DEX (0.1 and 1 μM) promoted cardiac hypertrophy in H9C2 cells at 4 days of treatment as evidenced through increased cell size and protein content. A significant induction in foetal gene reprogramming was observed, confirming the establishment of hypertrophy. Moreover, the hypertrophic response at 4 days was perceived to be physiological at 0.1 μM and pathological at 1 μM based on α-MHC and IGF1R expression, but complete inhibition in the PKB/AKT expression confirmed it to be pathological hypertrophy at both the concentrations (0.1 and 1 μM). The present study reports for the first time the mechanistic insights into DEX-mediated hypertrophy. It is hypothesized to be orchestrated through the activation of AT1R that is involved in the alteration of the cardiac isoform of SERCA2 expression perturbing the calcium homeostasis. This leads to the activation of calcineurin B, independent of NFAT involvement, which in coordination with ROS induces the activation of JNK of the MAPK signalling.


Calcineurin B Cardiac hypertrophy Dexamethasone H9C2 Hypertrophic signalling 



This work was supported by UGC-Dr D S Kothari Postdoctoral fellowship awarded to Dr Sangeetha KN, by the University Grants Commission, Government of India [Award letter No. F. 13-673/2012(BSR)].

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ (2010) The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 56(14):1113–1132CrossRefPubMedGoogle Scholar
  2. 2.
    Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodelling during pathophysiologic stimulation. Circulation 122(25):2727–2735CrossRefPubMedGoogle Scholar
  3. 3.
    Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart-A new therapeutic target? Circulation 109:1580–1589CrossRefPubMedGoogle Scholar
  4. 4.
    Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodelling. Hypertension 49:241–248CrossRefPubMedGoogle Scholar
  5. 5.
    Gathercole LL, Morgan SA, Bujalska IJ, Stewart PM, Tomlinson JW (2011) Short- and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue. Nutr Diabetes 1(1):e3PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Ren R, Oakley RH, Cruz-Topete D, Cidlowski JA (2012) Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology 153(11):5346–5360PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Oakley RH, Cidlowski JA (2015) Glucocorticoid signalling in the heart: a cardiomyocyte perspective. J Steroid Biochem Mol Biol S0960–0760(15):00094-1Google Scholar
  8. 8.
    De Vries WB, Van der Leij FR, Bakker JM, Kamphuis PJ, Van Oosterhout MF, Schipper ME, Smid GB, Bartelds B, Van Bel F (2002) Alterations in adult rat heart after neonatal dexamethasone therapy. Pediatr Res 52:900–906CrossRefPubMedGoogle Scholar
  9. 9.
    Muangmingsuk S, Ingram P, Gupta MP, Arcilla RA, Gupta M (2000) Dexamethasone induced cardiac hypertrophy in newborn rats is accompanied by changes in myosin heavy chain phenotype and gene transcription. Mol Cell Biochem 209:165–173CrossRefPubMedGoogle Scholar
  10. 10.
    Whitehurst RM Jr, Zhang M, Bhattacharjee A, Li M (1999) Dexamethasone-induced hypertrophy in rat neonatal cardiac myocytes involves an elevated L-type Ca2+ current. J Mol Cell Cardiol 31:1551–1558CrossRefPubMedGoogle Scholar
  11. 11.
    Lister K, Autelitano DJ, Jenkins A, Hannan RD, Sheppard KE (2006) Cross talk between corticosteroids and alpha-adrenergic signalling augments cardiomyocyte hypertrophy: a possible role for SGK1. Cardiovasc Res 70:555–565CrossRefPubMedGoogle Scholar
  12. 12.
    Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW (2011) Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS One 6(1):e16053PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  14. 14.
    Ramadevi Mani S, Lakshmi BS (2010) G1 arrest and caspase-mediated apoptosis in HL-60 cells by dichloromethane extract of Centrosema pubescens. Am J Chin Med 38(6):1143–1159CrossRefPubMedGoogle Scholar
  15. 15.
    Sangeetha KN, Sujatha S, Muthusamy VS, Anand S, Nithya N, Velmurugan D, Arun B, Lakshmi BS (1800) (2010) 3β-taraxerol of Mangifera indica, a PI3K dependent dual activator of glucose transport and glycogen synthesis in 3T3-L1 adipocytes. BBA—Gener Subj 3:359–366Google Scholar
  16. 16.
    Xie M, Burchfield JS, Hill JA (2013) Pathological ventricular remodelling: mechanisms: part 1 of 2. Circulation 128(4):388–400PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Paolisso G, De Riu S, Marrazzo G, Verza M, Varricchio M, D’Onofrio F (1991) Insulin resistance and hyperinsulinemia in patients with chronic congestive heart failure. Metabolism 40:972–977CrossRefPubMedGoogle Scholar
  18. 18.
    Witteles RM, Fowler MB (2008) Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 51:93–102CrossRefPubMedGoogle Scholar
  19. 19.
    Ingelsson E, Sundström J, Arnlöv J, Zethelius B, Lind L (2005) Insulin resistance and risk of congestive heart failure. JAMA 294:334–341CrossRefPubMedGoogle Scholar
  20. 20.
    Patel JV, Cummings DE, Girod JP, Mascarenhas AV, Hughes EA, Manjula Gupta M, Lip GYH, Reddy S, Brotman DJ (2006) Role of metabolically active hormones in the insulin resistance associated with short-term glucocorticoid treatment. J Negat Results BioMed 5:14PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. Vitro Cell Dev Biol Anim 47(2):125–131CrossRefGoogle Scholar
  22. 22.
    Kolwicz SC Jr, Tian R (2011) Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 90(2):194–201PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K et al (2004) Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension 44:662–667CrossRefPubMedGoogle Scholar
  24. 24.
    Kagaya Y, Kanno Y, Takeyama D, Ishide N, Maruyama Y, Takahashi T et al (1990) Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation 81:1353–1361CrossRefPubMedGoogle Scholar
  25. 25.
    Sangeetha KN, Shilpa K, Jyothi Kumari P, Lakshmi BS (2013) Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangifera indica. Phytomedicine 20:213–220CrossRefPubMedGoogle Scholar
  26. 26.
    Reddy DS (1997) Cellular and molecular biology of cardiac hypertrophy. Curr Sci 72(1):13–30Google Scholar
  27. 27.
    Komuro I, Yazaki Y (1993) Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55:55–75CrossRefPubMedGoogle Scholar
  28. 28.
    Knowlton KU, Rockman HA, Itani M, Vovan A, Seidman CE, Chien KR (1995) Divergent pathways mediate the induction of ANF transgenes in neonatal and hypertrophic ventricular myocardium. J Clin Invest 96(3):1311–1318PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34:255–262CrossRefPubMedGoogle Scholar
  30. 30.
    Sizemore JMK, Dixon EN, Baute AJ, Waikel RL (2012) Regulation of Alpha-Myosin Heavy Chain in cardiac remodelling associated with pregnancy. FASEB J 26(922):2Google Scholar
  31. 31.
    McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, Schinke M, Kong S, Sherwood MC, Brown J, Riggi L, Kang PM, Izumo S (2004) The IGF1 receptor induces physiological heart growth via the phosphoinositide 3-kinase (p110alpha) pathway. J Biol Chem 279(6):4782–4793CrossRefPubMedGoogle Scholar
  32. 32.
    Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153(1):S137–S153PubMedCentralPubMedGoogle Scholar
  33. 33.
    Aoki H, Sadoshima J, Izumo S (2000) Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med 6(2):183–188CrossRefPubMedGoogle Scholar
  34. 34.
    Katoh D, Hongo K, Ito K, Yoshino T, Kayama Y, Kawai M, Date T, Yoshura M (2014) Corticosteroids increase intracellular free sodium ion concentration via glucocorticoid receptor pathway in cultured neonatal rat cardiomyocytes. IJCHV 3:49–56Google Scholar
  35. 35.
    De P, Roy SG, Kar D, Bandyopadhyay A (2011) Excess of glucocorticoid induces myocardial remodeling and alteration of calcium signaling in cardiomyocytes. J Endocrinol. 209(1):105–114CrossRefPubMedGoogle Scholar
  36. 36.
    Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79CrossRefPubMedGoogle Scholar
  37. 37.
    De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW, Kitsis RN, Molkentin JD (2000) Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo an apoptosis-independent model of dilated heart failure. Circ Res 86:255–263CrossRefPubMedGoogle Scholar
  38. 38.
    Huang H, Joseph LC, Gurin MI, Thorp EB, Morrow JP (2014) Extracellular signal-regulated kinase activation during cardiac hypertrophy reduces sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) transcription. J Mol Cell Cardiol 75:58–63PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Kawase Y, Hajjar RJ (2008) The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Clin Pract Cardiovasc Med 5(9):554–565CrossRefPubMedGoogle Scholar
  40. 40.
    Pinz I, Tian R, Belke D, Swanson E, Dillmann W, Ingwall JS (2011) Compromised myocardial energetics in hypertrophied mouse hearts diminish the beneficial effect of overexpressing SERCA2a. J Biol Chem 286(12):10163–10168PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Tilley DG (2011) G protein-dependent and –independent signaling pathways and their impact on cardiac function. Circ Res 109(2):217–230PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63(3):467–475CrossRefPubMedGoogle Scholar
  43. 43.
    Zelarayan L, Renger A, Noack C, Zafiriou M-P, Gehrke C, Van der Nagel R, Dietz R, de Windt L, Bergmann MW (2009) NF-kappaB activation is required for adaptive cardiac hypertrophy. Cardiovasc Res 84:416–424CrossRefPubMedGoogle Scholar
  44. 44.
    Suh KS, Tatunchak TT, Crutchley JM, Edwards LE, Marin KG, Yuspa SH (2003) Genomic structure and promoter analysis of PKC-delta. Genomics 82:57–67CrossRefPubMedGoogle Scholar
  45. 45.
    Feng JQ, Xing L, Zhang JH, Zhao M, Horn D, Chan J, Boyce BF, Harris SE, Mundy GR, Chen D (2003) NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. J Biol Chem 278:29130–29135CrossRefPubMedGoogle Scholar
  46. 46.
    Armstrong K, Robson CN, Leung HY (2006) NF-kappaB activation upregulates fibroblast growth factor 8 expression in prostate cancer cells. Prostate 66:1223–1234CrossRefPubMedGoogle Scholar
  47. 47.
    Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24:8374–8385PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • K. N. Sangeetha
    • 1
  • B. S. Lakshmi
    • 2
  • S. Niranjali Devaraj
    • 1
  1. 1.Department of BiochemistryUniversity of MadrasChennaiIndia
  2. 2.Centre for Food Technology, Department of BiotechnologyAnna UniversityChennaiIndia

Personalised recommendations