Molecular and Cellular Biochemistry

, Volume 409, Issue 1–2, pp 225–241 | Cite as

Direct localisation of molecules in tissue sections of growing antler tips using MALDI imaging

  • Santanu Deb-Choudhury
  • Wenying Wang
  • Stefan Clerens
  • Chris McMahon
  • Jolon M. Dyer
  • Chunyi Li


The astonishing growth rate of deer antlers offers a valuable model for the discovery of novel factors and regulatory systems controlling rapid tissue growth. Numerous molecules have been identified in growing antlers using a variety of techniques. However, little is known about the spatial distribution of these molecules in situ. A technique that has the potential to help in this regard is direct proteomic analysis of tissue sections by matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). The present study applied this technique to spatially map molecules in antler tissue sections. Two protonated molecular ions were selected: m/z 6679 and m/z 6200 corresponding to VEGF and thymosin beta-10, respectively. Superimposition of the respective ion images on to histologically stained samples showed distinct spatial distribution across the antler tissue sections which were consistent with the previous reports using in situ hybridization. Two other molecular ions specifically m/z 8100 and m/z 11,800 were also selected, corresponding to reported masses of urocortin precursor and thioredoxin, respectively. As the spatial distribution of these proteins is not specifically known, MALDI-IMS was used as a potential technique to obtain information on their distribution on antler tips. The presence of all these molecules in deer antlers were further confirmed using LC–MS/MS data. The present study also demonstrated that MALDI-IMS could be further used to image antler sections with an extended ion mass range of up to m/z 45,000, thus potentially increasing the ability to discover the distribution of a larger set of molecules that may play an important role in antler growth. We have thus demonstrated that MALDI-IMS is a promising technique for generating molecular maps with high spatial resolution which can aid in evaluating the function of novel molecules during antler growth.


Deer Antler MALDI-IMS Growth centre Proliferation 



The authors would like to thank Invermay deer farm crew and Otago Venison Ltd for helping collect antler tissue samples.

Author contributions

C.L., S.DC., S.C., C.M., and J.D conceived and designed the experiments. S.DC., W.W., and C.L performed the experiments. S.DC., W.W., C.L., S.C, and C.M analysed the data. C.L., S.DC., S.C., C.M., W.W., and J.D wrote this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Li C, Yang F, Sheppard A (2009) Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers. Curr Stem Cell Res Ther 4(3):237–251CrossRefPubMedGoogle Scholar
  2. 2.
    Goss RJ (1983) Deer antlers. Regeneration, function and evolution. Academic Press, New YorkGoogle Scholar
  3. 3.
    Kierdorf U, Li C, Price JS (2009) Improbable appendages: deer antler renewal as a unique case of mammalian regeneration. Semin Cell Dev Biol 20(5):535–542CrossRefPubMedGoogle Scholar
  4. 4.
    Li C, Zhao S, Wang W (1988) Biology of deer antler. Chinese Press of Agricultural Sciences, BeijingGoogle Scholar
  5. 5.
    Goss RJ (1970) Problems of antlerogenesis. Clin Orthop 69:227–238CrossRefPubMedGoogle Scholar
  6. 6.
    Li C (2003) Development of deer antler model for biomedical research. Adv Res Updat 4(2):256–274Google Scholar
  7. 7.
    Kierdorf UK, Kierdorf H (2011) Deer antlers—a model of mammalian appendage regeneration: an extensive review. Gerontology 57(1):53–65CrossRefPubMedGoogle Scholar
  8. 8.
    Chapman DI (1975) Antlers-bones of contention. Mammal Rev 5(4):121–172CrossRefGoogle Scholar
  9. 9.
    Banks WJ, Newbrey JW (1982) Light microscopic studies of the ossification process in developing antlers. In: Brown RD (ed) Antler Development in Cervidae. Caesar Kleberg Wildl. Res. Inst., KingsvilleGoogle Scholar
  10. 10.
    Goss R (1983) Chondrogenesis in regenerating systems. In: Hall B (ed) Cartilage: biomedical aspects, vol 3. Academic Press, New York, pp 267–370CrossRefGoogle Scholar
  11. 11.
    Kierdorf H, Kierdorf U, Szuwart T, Gath U, Clemen G (1994) Light microscopic observations on the ossification process in the early developing pedicle of fallow deer (Dama dama). Anat Anz 176(3):243–249CrossRefGoogle Scholar
  12. 12.
    Li C, Suttie JM (1994) Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus). Anat Rec 239(2):198–215CrossRefPubMedGoogle Scholar
  13. 13.
    Li C, Suttie JM (1998) Electron microscopic studies of antlerogenic cells from five developmental stages during pedicle and early antler formation in red deer (Cervus elaphus). Anat Rec 252(4):587–599CrossRefPubMedGoogle Scholar
  14. 14.
    Li C, Clark DE, Lord EA, Stanton JA, Suttie JM (2002) Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery. Anat Rec 268(2):125–130CrossRefPubMedGoogle Scholar
  15. 15.
    Colitti MA, Allen SP, Price JS (2005) Programmed cell death in the regenerating deer antler. J Anat 207(4):339–351. doi: 10.1111/j.1469-7580.2005.00464.x PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Li C, Suttie JM (2003) Tissue collection methods for antler research. Eur J Morphol 41(1):23–30CrossRefPubMedGoogle Scholar
  17. 17.
    Gyurjan I Jr, Molnar A, Borsy A, Steger V, Hackler L Jr, Zomborszky Z, Papp P, Duda E, Deak F, Lakatos P, Puskas LG, Orosz L (2007) Gene expression dynamics in deer antler: mesenchymal differentiation toward chondrogenesis. Mol Genet Genomics 277(3):221–235. doi: 10.1007/s00438-006-0190-0 CrossRefPubMedGoogle Scholar
  18. 18.
    Molnar A, Gyurjan I, Korpos E, Borsy A, Steger V, Buzas Z, Kiss I, Zomborszky Z, Papp P, Deak F, Orosz L (2007) Identification of differentially expressed genes in the developing antler of red deer Cervus elaphus. Mol Genet Genomics 277(3):237–248. doi: 10.1007/s00438-006-0193-x CrossRefPubMedGoogle Scholar
  19. 19.
    Villanyi Z, Gyurjan I, Steger V, Orosz L (2008) Plaque-based competitive hybridization. J Biomol Screen 13(1):80–84. doi: 10.1177/1087057107310876 CrossRefPubMedGoogle Scholar
  20. 20.
    Yao B, Zhao Y, Zhang H, Zhang M, Liu M, Liu H, Li J (2012) Sequencing and de novo analysis of the Chinese Sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology. Biotechnol Lett 34(5):813–822. doi: 10.1007/s10529-011-0841-z CrossRefPubMedGoogle Scholar
  21. 21.
    Borsy A, Podani J, Steger V, Balla B, Horvath A, Kosa JP, Gyurjan I Jr, Molnar A, Szabolcsi Z, Szabo L, Jako E, Zomborszky Z, Nagy J, Semsey S, Vellai T, Lakatos P, Orosz L (2009) Identifying novel genes involved in both deer physiological and human pathological osteoporosis. Mol Genet Genomics 281(3):301–313. doi: 10.1007/s00438-008-0413-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Pita-Thomas W, Nieto-Sampedro M, Maza RM, Nieto-Diaz M (2010) Factors promoting neurite outgrowth during deer antler regeneration. J Neurosci Res 88(14):3034–3047. doi: 10.1002/jnr.22459 CrossRefPubMedGoogle Scholar
  23. 23.
    Li C, Harper A, Puddick J, Wang W, McMahon C (2012) Proteomes and signalling pathways of antler stem cells. PLoS One 7(1):e30026. doi: 10.1371/journal.pone.0030026 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Park HJ, do Lee H, Park SG, Lee SC, Cho S, Kim JJ, Bae H, Park BC (2004) Proteome analysis of red deer antlers. Proteomics 4(11):3642–3653CrossRefPubMedGoogle Scholar
  25. 25.
    Sui Z, Yuan H, Liang Z, Zhao Q, Wua Q, Xia S, Zhang L, Huo Y, Zhang Y (2013) An activity-maintaining sequential protein extraction method for bioactive assay and proteome analysis of velvet antlers. Talanta 107:189–194. doi: 10.1016/j.talanta.2013.01.015 CrossRefPubMedGoogle Scholar
  26. 26.
    Mark L, Maasz G (2012) Pirger Z (2012), High resolution spatial distribution of neuropeptides by MALDI imaging mass spectrometry in the terrestrial snail, Helix pomatia. Acta Biol Hung 2:113–122. doi: 10.1556/ABiol.3.2012.Suppl.2.15 CrossRefGoogle Scholar
  27. 27.
    Lay JO Jr, Gidden J, Liyanage R, Emerson B, Durham B (2012) Rapid characterization of lipids by MALDI MS. Part 2: artifacts, ion suppression, and TLC MALDI imaging. Lipid Technol 24(2):36–40. doi: 10.1002/lite.201200174 CrossRefGoogle Scholar
  28. 28.
    Dani FR, Francese S, Mastrobuoni G, Felicioli A, Caputo B, Simard F, Pieraccini G, Moneti G, Coluzzi M, Della TA, Turillazzi S (2008) Exploring proteins in Anopheles gambiae male and female antennae through MALDI mass spectrometry profiling. PLoS One. doi: 10.1371/journal.pone.0002822 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Chaurand P, Fouchecourt S, DaGue BB, Xu BJ, Reyzer ML, Orgebin-Crist MC, Caprioli RM (2003) Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry. Proteomics 3(11):2221–2239. doi: 10.1002/pmic.200300474 CrossRefPubMedGoogle Scholar
  30. 30.
    Balluff B, Schone C, Höfler H, Walch A (2011) MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 136(3):227–244. doi: 10.1007/s00418-011-0843-x CrossRefPubMedGoogle Scholar
  31. 31.
    Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38(7):699–708. doi: 10.1002/jms.505 CrossRefPubMedGoogle Scholar
  32. 32.
    Leinweber BD, Tsaprailis G, Monks TJ, Lau SS (2009) Improved MALDI-TOF imaging yields increased protein signals at high molecular mass. J Am Soc Mass Spec 20(1):89–95. doi: 10.1016/j.jasms.2008.09.008 CrossRefGoogle Scholar
  33. 33.
    Davidson SM, Yellon DM (2009) Urocortin: a protective peptide that targets both the myocardium and vasculature. Pharmacol Rep 61(1):172–182CrossRefPubMedGoogle Scholar
  34. 34.
    Venkatasubramanian S, Newby DE, Lang NN (2010) Urocortins in heart failure. Biochem Pharmacol 80(3):289–296. doi: 10.1016/j.bcp.2010.03.032 CrossRefPubMedGoogle Scholar
  35. 35.
    Bale TL, Lee KF, Vale WW (2002) The role of corticotropin-releasing factor receptors in stress and anxiety. Integr Comp Biol 42(3):552–555. doi: 10.1093/icb/42.3.552 CrossRefPubMedGoogle Scholar
  36. 36.
    Clark DE, Lord EA, Suttie JM (2006) Expression of VEGF and pleiotrophin in deer antler. Anat Rec A Discov Mol Cell Evol Biol 288(12):1281–1293CrossRefPubMedGoogle Scholar
  37. 37.
    Lee S, Kim SM, Lee RT (2013) Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 18(10):1165–1207. doi: 10.1089/ars.2011.4322 PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Muller M, Risau W, Edgington T, Collen D (1996) Role of tissue factor in embryonic blood vessel development. Nature 383(6595):73–75. doi: 10.1038/383073a0 CrossRefPubMedGoogle Scholar
  39. 39.
    Ferrara N, Bunting S (1996) Vascular endothelial growth factor, a specific regulator of angiogenesis. Curr Opin Nephrol Hypertens 5(1):35–44CrossRefPubMedGoogle Scholar
  40. 40.
    Li C (2012) Deer antler regeneration: a stem cell-based epimorphic process. Birth Defects Res Part C 96(1):51–62. doi: 10.1002/bdrc.21000 CrossRefGoogle Scholar
  41. 41.
    Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J (2002) Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest 110(6):751–759. doi: 10.1172/JCI15153 PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Lord E, Clark D, Martin S, Pedersen G, Gray J, Li C (2005) Suttie J Profiling genes expressed in the regenerating tip of red deer (Cervus elaphus) antler. In: Suttie J, Haines S, Li C (eds) Proceedings of the 2nd International Symposium on Antler Science and Product Technology. Queenstown, New Zealand, pp 129–134Google Scholar
  43. 43.
    Carpintero P, Franco del Amo F, Anadon R, Gomez-Marquez J (1996) Thymosin beta10 mRNA expression during early postimplantation mouse development. FEBS Lett 394(1):103–106CrossRefPubMedGoogle Scholar
  44. 44.
    Price JS, Oyajobi BO, Nalin AM, Frazer A, Russell RG, Sandell LJ (1996) Chondrogenesis in the regenerating antler tip in red deer: expression of collagen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and immunocytochemistry. Dev Dyn 205:332–347CrossRefPubMedGoogle Scholar
  45. 45.
    Börnsen KO, Gass MA, Bruin GJ, von Adrichem JH, Biro MC, Kresbach GM, Ehrat M (1997) Influence of solvents and detergents on matrix-assisted laser desorption/Ionization mass spectrometry measurements of proteins and oligonucleotides. Rap Comm Mass Spec 11(6):603–609CrossRefGoogle Scholar
  46. 46.
    Seeley EH, Caprioli RM (2012) 3D imaging by mass spectrometry: a new frontier. Anal Chem 84(5):2105–2110PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Aerni HR, Cornett DS, Caprioli RM (2006) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78(3):827–834CrossRefPubMedGoogle Scholar
  48. 48.
    Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spec 19(8):1069–1077. doi: 10.1016/j.jasms.2008.03.016 CrossRefGoogle Scholar
  49. 49.
    Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM (2006) New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 5(11):2889–2900CrossRefPubMedGoogle Scholar
  50. 50.
    Benabdellah F, Seyer A, Quinton L, Touboul D, Brunelle A, Laprévote O (2010) Mass spectrometry imaging of rat brain sections: nanomolar sensitivity with MALDI versus nanometer resolution by TOF–SIMS. Anal Bioanal Chem 396(1):151–162. doi: 10.1007/s00216-009-3031-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Santanu Deb-Choudhury
    • 1
  • Wenying Wang
    • 2
  • Stefan Clerens
    • 1
  • Chris McMahon
    • 3
  • Jolon M. Dyer
    • 1
  • Chunyi Li
    • 2
    • 4
  1. 1.AgResearch, Food & Bio-Based ProductsLincoln Research CentreChristchurchNew Zealand
  2. 2.AgResearch Invermay Agricultural CentreMosgielNew Zealand
  3. 3.AgResearch Ruakura Agricultural CentreHamiltonNew Zealand
  4. 4.State Key Laboratory for Molecular Biology of Special Economic AnimalsChangchunPeople’s Republic of China

Personalised recommendations