Advertisement

Molecular and Cellular Biochemistry

, Volume 409, Issue 1–2, pp 103–111 | Cite as

miR-25 promotes glioblastoma cell proliferation and invasion by directly targeting NEFL

  • Gang Peng
  • Xianrui Yuan
  • Jian Yuan
  • Qing Liu
  • Minhui Dai
  • Chenfu Shen
  • Jianrong Ma
  • Yiwei Liao
  • Weixi Jiang
Article

Abstract

Glioblastoma multiforme (GBM) is the most malignant and common brain tumor; it is aggressive growth pattern means that GBM patients face a poor prognosis even when receiving the best available treatment modalities. In recent years, an increasing number of reports suggest that the discovery of microRNAs (miRNAs) might provide a novel therapeutic target for human cancers, including GBM. One miRNA in particular, microRNA-25 (miR-25), is overexpressed in several cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-25 in GBM has not been totally elucidated. In this study, we demonstrated that miR-25 was significantly up-regulated in astrocytoma tissues and glioblastoma cell lines. In vitro studies further demonstrated that overexpressed miR-25 was able to promote, while its antisense oligos inhibited cell proliferation and invasion in U251 cells. Moreover, we identified neurofilament light polypeptide (NEFL) as a novel target molecule of miR-25. Also of note was the fact that NEFL was down-regulated with increased levels of miR-25 expression in human astrocytoma clinical specimens. In addition, via the mTOR signaling pathway, NEFL-siRNA could significantly attenuate the inhibitory effects of knockdown miR-25 on the proliferation and invasion of U251 cells. Overall, our results showed an important role for miR-25 in regulating NEFL expression in GBM, and suggest that miR-25 could be a potential target for GBM treatment.

Keywords

miR-25 NEFL Glioblastoma Cell proliferation and invasion 

Notes

Acknowledgments

The authors thank Dr. Zeyou Wang for his precious suggestions and generous help in carrying out this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    Zhu Y, Parada LF (2002) The molecular and genetic basis of neurological tumours. Nat Rev Cancer 2:616–626. doi: 10.1038/nrc866 CrossRefPubMedGoogle Scholar
  2. 2.
    Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY (2012) Primary brain tumours in adults. Lancet 379:1984–1996. doi: 10.1016/S0140-6736(11)61346-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. doi: 10.1056/NEJMra07081264 CrossRefPubMedGoogle Scholar
  4. 4.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi: 10.1016/S0092-8674(04)00045-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi: 10.1038/nature03702 CrossRefPubMedGoogle Scholar
  6. 6.
    Liu X, Lei Q, Yu Z, Xu G, Tang H, Wang W, Wang Z, Li G, Wu M (2015) MiR-101 reverses the hypomethylation of the LMO3 promoter in glioma cells. Oncotarget 6:7930–7943PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    She X, Yu Z, Cui Y, Lei Q, Wang Z, Xu G, Luo Z, Li G, Wu M (2014) miR-181 subunits enhance the chemosensitivity of temozolomide by Rap1B-mediated cytoskeleton remodeling in glioblastoma cells. Med Oncol 31:892. doi: 10.1007/s12032-014-0892-9 CrossRefPubMedGoogle Scholar
  8. 8.
    She X, Yu Z, Cui Y, Lei Q, Wang Z, Xu G, Xiang J, Wu M, Li G (2014) miR-128 and miR-149 enhance the chemosensitivity of temozolomide by Rap1B-mediated cytoskeletal remodeling in glioblastoma. Oncol Rep 32:957–964. doi: 10.3892/or.2014.3318 PubMedGoogle Scholar
  9. 9.
    Tang H, Bian Y, Tu C, Wang Z, Yu Z, Liu Q, Xu G, Wu M, Li G (2013) The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas. Curr Cancer Drug Targets 13:221–231. doi: 10.2174/1568009611313020010 CrossRefPubMedGoogle Scholar
  10. 10.
    Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, Liao Q, Guo X, Wang R, Li X, Zeng F, Wu M, Li G (2011) Interaction of hsa-miR-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res 1390:21–32. doi: 10.1016/j.brainres.2011.03.034 CrossRefPubMedGoogle Scholar
  11. 11.
    Tang H, Wang Z, Liu Q, Liu X, Wu M, Li G (2014) Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. PloS One 9:e84146. doi: 10.1371/journal.pone.0084146 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Tang H, Wang Z, Liu X, Liu Q, Xu G, Li G, Wu M (2012) LRRC4 inhibits glioma cell growth and invasion through a miR-185-dependent pathway. Curr Cancer Drug Targets 12:1032–1042. doi: 10.2174/156800912803251180 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Z, Yang J, Xu G, Wang W, Liu C, Yang H, Yu Z, Lei Q, Xiao L, Xiong J, Zeng L, Xiang J, Ma J, Li G, Wu M (2015) Targeting miR-381-NEFL axis sensitizes glioblastoma cells to temozolomide by regulating stemness factors and multidrug resistance factors. Oncotarget 6:3147–3164PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Yuan J, Xiao G, Peng G, Liu D, Wang Z, Liao Y, Liu Q, Wu M, Yuan X (2015) MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochem Biophys Res Commun 457:171–176. doi: 10.1016/j.bbrc.2014.12.078 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H, Xiao L, Liu X, Wang R, Li X, Wu M, Li G (2011) MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer 10:124. doi: 10.1186/1476-4598-10-124 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Li Z, Sun Y, Chen X, Squires J, Nowroozizadeh B, Liang C, Huang J (2015) p53 Mutation directs AURKA overexpression via miR-25 and FBXW7 in prostatic small cell neuroendocrine carcinoma. Mol Cancer Res 13:584–591. doi: 10.1158/1541-7786.MCR-14-0277-T CrossRefPubMedGoogle Scholar
  17. 17.
    Li BS, Zuo QF, Zhao YL, Xiao B, Zhuang Y, Mao XH, Wu C, Yang SM, Zeng H, Zou QM, Guo G (2014) MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene 34(20):2556–2565. doi: 10.1038/onc.2014.214 CrossRefPubMedGoogle Scholar
  18. 18.
    Feng S, Pan W, Jin Y, Zheng J (2014) MiR-25 promotes ovarian cancer proliferation and motility by targeting LATS2. Tumour Biol 35:12339–12344. doi: 10.1007/s13277-014-2546-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Wang X, Wang HK, Li Y, Hafner M, Banerjee NS, Tang S, Briskin D, Meyers C, Chow LT, Xie X, Tuschl T, Zheng ZM (2014) microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sci USA 111:4262–4267. doi: 10.1073/pnas.1401430111 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Li X, Yang C, Wang X, Zhang J, Zhang R, Liu R (2014) The expression of miR-25 is increased in colorectal cancer and is associated with patient prognosis. Med Oncol 31:781. doi: 10.1007/s12032-013-0781-7 CrossRefPubMedGoogle Scholar
  21. 21.
    Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Takata A, Shibata C, Kondo Y, Akanuma M, Yoshida H, Koike K (2013) Regulation of the expression of the liver cancer susceptibility gene MICA by microRNAs. Sci Rep 3:2739. doi: 10.1038/srep02739 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Xu X, Chen Z, Zhao X, Wang J, Ding D, Wang Z, Tan F, Tan X, Zhou F, Sun J, Sun N, Gao Y, Shao K, Li N, Qiu B, He J (2012) MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 421:640–645. doi: 10.1016/j.bbrc.2012.03.048 CrossRefPubMedGoogle Scholar
  23. 23.
    Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, Mott JL (2012) miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 55:465–475. doi: 10.1002/hep.24698 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G, Rameh L, Loda M, Pandolfi PP (2010) Identification of the miR-106b ~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3:a29. doi: 10.1126/scisignal.2000594 CrossRefGoogle Scholar
  25. 25.
    Yang T, Chen T, Li Y, Gao L, Zhang S, Wang T, Chen M (2015) Downregulation of miR-25 modulates non-small cell lung cancer cells by targeting CDC42. Tumour Biol 36:1903–1911. doi: 10.1007/s13277-014-2793-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Haddad LA, Smith N, Bowser M, Niida Y, Murthy V, Gonzalez-Agosti C, Ramesh V (2002) The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J Biol Chem 277:44180–44186. doi: 10.1074/jbc.M207211200 CrossRefPubMedGoogle Scholar
  27. 27.
    Chen B, Chen J, House MG, Cullen KJ, Nephew KP, Guo Z (2012) Role of neurofilament light polypeptide in head and neck cancer chemoresistance. Mol Cancer Res 10:305–315. doi: 10.1158/1541-7786.MCR-11-0300 CrossRefPubMedGoogle Scholar
  28. 28.
    Costa PM, Cardoso AL, Nobrega C, Pereira DAL, Bruce JN, Canoll P, Pedroso DLM (2013) MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet 22:904–918. doi: 10.1093/hmg/dds496 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Su ZX, Zhao J, Rong ZH, Geng WM, Wu YG, Qin CK (2014) Upregulation of microRNA-25 associates with prognosis in hepatocellular carcinoma. Diagn Pathol 9:47. doi: 10.1186/1746-1596-9-47 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Macoska JA, Trybus TM, Benson PD, Sakr WA, Grignon DJ, Wojno KD, Pietruk T, Powell IJ (1995) Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Res 55:5390–5395PubMedGoogle Scholar
  31. 31.
    Knowles MA, Shaw ME, Proctor AJ (1993) Deletion mapping of chromosome 8 in cancers of the urinary bladder using restriction fragment length polymorphisms and microsatellite polymorphisms. Oncogene 8:1357–1364PubMedGoogle Scholar
  32. 32.
    Kang S, Kim B, Park SB, Jeong G, Kang HS, Liu R, Kim SJ (2013) Stage-specific methylome screen identifies that NEFL is downregulated by promoter hypermethylation in breast cancer. Int J Oncol 43:1659–1665. doi: 10.3892/ijo.2013.2094 PubMedGoogle Scholar
  33. 33.
    Coon SW, Savera AT, Zarbo RJ, Benninger MS, Chase GA, Rybicki BA, Van Dyke DL (2004) Prognostic implications of loss of heterozygosity at 8p21 and 9p21 in head and neck squamous cell carcinoma. Int J Cancer 111:206–212. doi: 10.1002/ijc.20254 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang M, Wang X, Li W, Cui Y (2015) miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells. Biochem Biophys Res Commun 460:806–812. doi: 10.1016/j.bbrc.03.110 CrossRefPubMedGoogle Scholar
  35. 35.
    Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, Akatsuka S, Horio Y, Hida T, Kondo Y, Toyokuni S, Osada H, Sekido Y (2011) LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 71:873–883. doi: 10.1158/0008-5472.CAN-10-2164 CrossRefPubMedGoogle Scholar
  36. 36.
    Li W, Wang L, Katoh H, Liu R, Zheng P, Liu Y (2011) Identification of a tumor suppressor relay between the FOXP3 and the Hippo pathways in breast and prostate cancers. Cancer Res 71:2162–2171. doi: 10.1158/0008-5472.CAN-10-3268 PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Yao F, Liu H, Li Z, Zhong C, Fang W (2015) Down-regulation of LATS2 in non-small cell lung cancer promoted the growth and motility of cancer cells. Tumour Biol 36:2049–2057. doi: 10.1007/s13277-014-2812-1 CrossRefPubMedGoogle Scholar
  38. 38.
    Yu T, Bachman J, Lai ZC (2015) Mutation analysis of large tumor suppressor genes LATS1 and LATS2 supports a tumor suppressor role in human cancer. Protein Cell 6:6–11. doi: 10.1007/s13238-014-0122-4 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Kodack DP, Askoxylakis V, Ferraro GB, Fukumura D, Jain RK (2015) Emerging strategies for treating brain metastases from breast cancer. Cancer Cell 27:163–175. doi: 10.1016/j.ccell.2015.01.001 CrossRefPubMedGoogle Scholar
  40. 40.
    Gulati S, Ytterhus B, Granli US, Gulati M, Lydersen S, Torp SH (2010) Overexpression of c-erbB2 is a negative prognostic factor in anaplastic astrocytomas. Diagn Pathol 5:18. doi: 10.1186/1746-1596-5-18 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gang Peng
    • 1
  • Xianrui Yuan
    • 1
  • Jian Yuan
    • 1
  • Qing Liu
    • 1
  • Minhui Dai
    • 2
  • Chenfu Shen
    • 1
  • Jianrong Ma
    • 1
  • Yiwei Liao
    • 1
  • Weixi Jiang
    • 1
  1. 1.Department of NeurosurgeryXiangya Hospital of Central South UniversityChangshaChina
  2. 2.Department of OphthalmologyXiangya Hospital of Central South UniversityChangshaChina

Personalised recommendations