Skip to main content
Log in

Effect of estrogen on expression of prohibitin in white adipose tissue and liver of diet-induced obese rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Prohibitin (PHB) is a ubiquitously expressed and highly conserved protein that participates in diverse cellular processes, and its functions are linked to a variety of diseases. In the present study, to explore transcriptional activation and signaling pathways involved in PHB regulation in response to sex hormone treatment, we investigated the effects of estrogen (17-β-estradiol, E2) on regulation of PHB in several metabolic tissues from male and female rats. Elevated expression of PHB was prominent in white adipose tissue (WAT) and the liver, and E2 stimulated PHB expression in both ND and HFD-fed rats. To further confirm the expression of PHB which was increased in WAT and the liver, we analyzed PHB expression levels in 3T3-L1 and C9 cells after the treatment of E2. Transcription and protein levels of PHB were dose-dependently increased by E2 treatment in both cell types, supporting our in vivo data. To further evaluate the possible role of E2 in elevation of PHB via estrogen receptors (ER), the potent ER inhibitor fulvestrant was treated to 3T3-L1 and C9 cells. Fulvestrant markedly suppressed both transcription and protein levels of PHB, suggesting that PHB expression in both tissues may be regulated through ERs. GeneMANIA, a predictive web interface, was used to show that Phb is regulated via the intracellular steroid hormone receptor signaling pathway, suggesting a role for ERs in expression of Phb as well as other metabolically important genes. Based on these results, we expect that targeting PHB would be a useful therapeutic approach for treatment of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ANXA2/Anxa2 :

Annexin A2/-encoding gene

ARL4A/Arl4a :

ADP-ribosylation factor-like protein 4A/-encoding gene

AR:

Androgen receptor

BAT:

Brown adipose tissue

CON:

Control

ER:

Estrogen receptor

E2:

17-β-Estradiol

Esr1 :

Estrogen receptor α-encoding gene

Esr2 :

Estrogen receptor β-encoding gene

LP3/Gzmb :

Granzyme-like protein 3/-encoding gene

HFD:

High fat diet

IL17RB/Il17rb :

Interleukin-17 receptor B/-encoding gene

MATK/Matk :

Megakaryocyte-associated tyrosine kinase/-encoding gene

ND:

Normal diet

PHB/Phb :

Prohibitin/-encoding gene

PHB2/Phb2 :

Prohibitin 2/-encoding gene

USP15/Usp15 :

Ubiquitin carboxyl-terminal hydrolase 15/-encoding gene

WAT:

White adipose tissue

References

  1. Wang S, Faller DV (2008) Roles of prohibitin in growth control and tumor suppression in human cancers. Transl Oncogenomics 3:23–37

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Artal-Sanz M, Tavernarakis N (2009) Prohibitin and mitochondrial biology. Trends Endocrinol Metab 20:394–401

    Article  CAS  PubMed  Google Scholar 

  3. Theiss AL, Sitaraman SV (2011) The role and therapeutic potential of prohibitin in disease. Biochim Biophys Acta 1813(6):1137–1143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Theiss AL, Idell RD, Srinivasan S, Klapproth JM, Jones DP, Merlin D et al (2007) Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J 21:197–206

    Article  CAS  PubMed  Google Scholar 

  5. Gamble SC, Chotai D, Odontiadis M, Dart DA, Brooke GN, Powell SM et al (2007) Prohibitin, a protein down-regulated by androgens, represses androgen receptor activity. Oncogene 26:1757–1768

    Article  CAS  PubMed  Google Scholar 

  6. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10:625–632

    Article  CAS  PubMed  Google Scholar 

  7. Sánchez-Quiles V, Segura V, Bigaud E, He B, O’Malley BW, Santamaría E et al (2012) Prohibitin-1 deficiency promotes inflammation and increases sensitivity to liver injury. J Proteomics 75:5783–5792

    Article  PubMed  Google Scholar 

  8. Sharma A, Qadri A (2004) Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci USA 101:17492–17497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sánchez-Quiles V, Santamaría E, Segura V, Sesma L, Prieto J, Corrales FJ (2010) Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: molecular mechanisms and functional implications. Proteomics 10:1609–1620

    Article  PubMed  Google Scholar 

  10. Ko KS, Tomasi ML, Iglesias-Ara A, French BA, French SW, Ramani K et al (2010) Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology 52:2096–2108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dart DA, Spencer-Dene B, Gamble SC, Waxman J, Bevan CL (2009) Manipulating prohibitin levels provides evidence for an in vivo role in androgen regulation of prostate tumours. Endocr Relat Cancer 16:1157–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Guo F, Hiroshima K, Wu D, Satoh M, Abulazi M, Yoshino I et al (2012) Prohibitin in squamous cell carcinoma of the lung: its expression and possible clinical significance. Hum Pathol 43:1282–1288

    Article  CAS  PubMed  Google Scholar 

  13. Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C et al (2005) Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 7:837–843

    Article  CAS  PubMed  Google Scholar 

  14. Ande SR, Nguyen KH, Padilla-Meier GP, Wahida W, Nyomba BL, Mishra S (2014) Prohibitin overexpression in adipocytes induces mitochondrial biogenesis, leads to obesity development, and affects glucose homeostasis in a sex-specific manner. Diabetes 63:3734–3741

    Article  CAS  PubMed  Google Scholar 

  15. He B, Feng Q, Mukherjee A, Lonard DM, DeMayo FJ, Katzenellenbogen BS et al (2008) A repressive role for prohibitin in estrogen signaling. Mol Endocrinol 22:344–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang S, Zhang B, Faller DV (2004) BRG1/BRM and prohibitin are required for growth suppression by estrogen antagonists. EMBO J 23:2293–2303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gamble SC, Odontiadis M, Waxman J, Westbrook JA, Dunn MJ, Wait R et al (2004) Androgens target prohibitin to regulate proliferation of prostate cancer cells. Oncogene 23:2996–3004

    Article  CAS  PubMed  Google Scholar 

  18. Faulds MH, Zhao C, Dahlman-Wright K, Gustafsson JÅ (2012) The diversity of sex steroid action: regulation of metabolism by estrogen signaling. J Endocrinol 212(1):3–12

    Article  CAS  PubMed  Google Scholar 

  19. Basu R, Dalla Man C, Campioni M, Basu A, Nair KS, Jensen MD et al (2007) Effect of 2 years of testosterone replacement on insulin secretion, insulin action, glucose effectiveness, hepatic insulin clearance, and postprandial glucose turnover in elderly men. Diabetes Care 30:1972–1978

    Article  CAS  PubMed  Google Scholar 

  20. Monjo M, Rodríguez AM, Palou A, Roca P (2003) Direct effects of testosterone, 17 β-estradiol, and progesterone on adrenergic regulation in cultured brown adipocytes: potential mechanism for gender-dependent thermogenesis. Endocrinology 144:4923–4930

    Article  CAS  PubMed  Google Scholar 

  21. Bryzgalova G, Lundholm L, Portwood N, Gustafsson JA, Khan A, Efendic S et al (2008) Mechanisms of anti-diabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol Endocrinol Metab 295:E904–E912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gao H, Bryzgalova G, Hedman E, Khan A, Efendic S, Gustafsson JA et al (2006) Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol Endocrinol 20:1287–1299

    Article  CAS  PubMed  Google Scholar 

  23. D’Eon TM, Souza SC, Aronovitz M, Obin MS, Fried SK, Greenberg AS (2005) Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J Biol Chem 280:35983–35991

    Article  PubMed  Google Scholar 

  24. He B, Kim TH, Kommagani R, Feng Q, Lanz RB, Jeong JW et al (2011) Estrogen-regulated prohibitin is required for mouse uterine development and adult function. Endocrinology 152:1047–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Chaudhari HN, Kim SW, Yun JW (2014) Gender-dimorphic regulation of antioxidant proteins in response to high-fat diet and sex steroid hormones in rats. Free Radic Res 48:587–598

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Choi JW, Oh TS, Choi DK, Mukherjee R, Liu H et al (2012) Comparative hepatic proteome analysis between lean and obese rats fed a high-fat diet reveals the existence of gender differences. Proteomics 2:284–299

    Article  Google Scholar 

  27. Choi DK, Oh TS, Choi JW, Mukherjee R, Wang X, Liu H et al (2011) Gender difference in proteome of brown adipose tissues between male and female rats exposed to a high fat diet. Cell Physiol Biochem 28:933–948

    Article  CAS  PubMed  Google Scholar 

  28. Mukherjee R, Kim SW, Choi MS, Yun JW (2014) Sex-dependent expression of caveolin 1 in response to sex steroid hormones is closely associated with development of obesity in rats. PLoS ONE 9:e90918

    Article  PubMed Central  PubMed  Google Scholar 

  29. Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA (2007) C/EBPbeta reprograms white 3T3-L1 preadipocytes to a brown adipocyte pattern of gene expression. J Biol Chem 282:24660–24669

    Article  CAS  PubMed  Google Scholar 

  30. Tsai CL, Chen WC, Hsieh HL, Chi PL, Hsiao LD, Yang CM (2014) TNF-α induces matrix metalloproteinase-9-dependent soluble intercellular adhesion molecule-1 release via TRAF2-mediated MAPKs and NF-κB activation in osteoblast-like MC3T3-E1 cells. J Biomed Sci 21:12

    Article  PubMed Central  PubMed  Google Scholar 

  31. Fernandez J, Gharahdaghi F, Mische SM (1998) Routine identification of proteins from sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19:1036–1045

    Article  CAS  PubMed  Google Scholar 

  32. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(Suppl 1):S4

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hossen MN, Kajimoto K, Akita H, Hyodo M, Ishitsuka T, Harashima H (2010) Ligand-based targeted delivery of a peptide modified nanocarrier to endothelial cells in adipose tissue. J Control Release 147:261–268

    Article  CAS  PubMed  Google Scholar 

  35. Hossen MN, Kajimoto K, Akita H, Hyodo M, Harashima H (2012) Vascular-targeted nanotherapy for obesity: unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. J Control Release 163:101–110

    Article  CAS  PubMed  Google Scholar 

  36. Ande SR, Xu Z, Gu Y, Mishra S (2012) Prohibitin has an important role in adipocyte differentiation. Int J Obes 36:1236–1244

    Article  CAS  Google Scholar 

  37. Liu D, Lin Y, Kang T, Huang B, Xu W, Garcia-Barrio M et al (2012) Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS ONE 7:e34315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Takahashi S, Masuda J, Shimagami H, Ohta Y, Kanda T, Saito K et al (2011) Mild caloric restriction up-regulates the expression of prohibitin: a proteome study. Biochem Biophys Res Commun 405:462–467

    Article  CAS  PubMed  Google Scholar 

  39. Vessal M, Mishra S, Moulik S, Murphy LJ (2006) Prohibitin attenuates insulin-stimulated glucose and fatty acid oxidation in adipose tissue by inhibition of pyruvate carboxylase. FEBS J 273:568–576

    Article  CAS  PubMed  Google Scholar 

  40. Dai Y, Ngo D, Jacob J, Forman LW, Faller DV (2008) Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis 29:1725–1733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Naaz A, Zakroczymski M, Heine P, Taylor J, Saunders P, Lubahn D et al (2002) Effect of ovariectomy on adipose tissue of mice in the absence of estrogen receptor alpha (ERα): a potential role for estrogen receptor beta (ERβ). Horm Metab Res 34:758–763

    Article  CAS  PubMed  Google Scholar 

  42. Choongkittaworn NM, Kim KH, Danner DB, Griswold MD (1993) Expression of prohibitin in rat seminiferous epithelium. Biol Reprod 49:300–310

    Article  CAS  PubMed  Google Scholar 

  43. Tanno S, Fukuda I, Saito Y, Ogawa K (1997) Prohibitin expression is decreased in the regenerating liver but not in chemically induced hepatic tumors in rats. Jpn J Cancer Res 88:1155–1164

    Article  CAS  PubMed  Google Scholar 

  44. Miyamoto S, Qin J, Safer B (2001) Detection of early gene expression changes during activation of human primary lymphocytes by in vitro synthesis of proteins from polysome-associated mRNAs. Protein Sci 10:423–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hussain-Hakimjee EA, Peng X, Mehta RR, Mehta RG (2006) Growth inhibition of carcinogen-transformed MCF-12F breast epithelial cells and hormone-sensitive BT-474 breast cancer cells by 1alpha-hydroxyvitamin D5. Carcinogenesis 27(3):551–559

    Article  CAS  PubMed  Google Scholar 

  46. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T (1990) Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol 258:C673–681

    CAS  PubMed  Google Scholar 

  47. Mishra S, Murphy LC, Murphy LJ (2006) The prohibitins: emerging roles in diverse functions. J Cell Mol Med 10:353–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhang B, Chambers KJ, Faller DV, Wang S (2007) Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene 26:7153–7157

    Article  CAS  PubMed  Google Scholar 

  49. Bitter GA (2007) Regulation of human estrogen receptor alpha-mediated gene transactivation in Saccharomyces cerevisiae by human co-activator and co-repressor proteins. J Steroid Biochem Mol Biol 103:189–195

    Article  CAS  PubMed  Google Scholar 

  50. Bacher S, Achatz G, Schmitz ML, Lamers MC (2002) Prohibitin and prohibitone are contained in high-molecular weight complexes and interact with α-actinin and annexin A2. Biochimie 84:1207–1220

    Article  CAS  PubMed  Google Scholar 

  51. Hitchcock JK, Katz AA, Schäfer G (2014) Dynamic reciprocity: the role of annexin A2 in tissue integrity. J Cell Commun Signal 8:125–133

    Article  PubMed Central  PubMed  Google Scholar 

  52. Hofmann I, Thompson A, Sanderson CM, Munro S (2007) The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr Biol 17:711–716

    Article  CAS  PubMed  Google Scholar 

  53. Randazzo PA, Northup JK, Kahn RA (1992) Regulatory GTP-binding proteins (ADP-ribosylation factor, Gt, and RAS) are not activated directly by nucleoside diphosphate kinase. J Biol Chem 267:18182–18189

    CAS  PubMed  Google Scholar 

  54. Sasson R, Dantes A, Tajima K, Amsterdam A (2003) Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J 17:1256–1266

    Article  CAS  PubMed  Google Scholar 

  55. Grigorenko VG, Yarovoi SV, Paulauskaite R, Amerik AYu (1994) Cloning of cDNA for granzyme-like protein III, a novel serine proteinase from rat duodenum. FEBS Lett 342:278–280

    Article  CAS  PubMed  Google Scholar 

  56. Ahmed M, Gaffen SL (2013) IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Krüppel-like factors. Cytokine 61:898–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Zúñiga LA, Shen WJ, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C et al (2010) IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 185:6947–6959

    Article  PubMed Central  PubMed  Google Scholar 

  58. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Simic M, Stamenkovic-Pejkovic D, Starcevic V et al (2009) Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int J Obes 33:151–156

    Article  CAS  Google Scholar 

  59. Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA et al (2014) Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med 20:54–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Harley IT, Stankiewicz TE, Giles DA, Softic S, Flick LM, Cappelletti M et al (2014) IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 59:1830–1839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bennett BD, Cowley S, Jiang S, London R, Deng B, Grabarek J et al (1994) Identification and characterization of a novel tyrosine kinase from megakaryocytes. J Biol Chem 269:1068–1074

    CAS  PubMed  Google Scholar 

  62. Eichhorn PJ, Rodón L, Gonzàlez-Juncà A, Dirac A, Gili M, Martínez-Sáez E et al (2012) USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med 18:429–435

    Article  CAS  PubMed  Google Scholar 

  63. La Rosa P, Acconcia F (2011) Signaling functions of ubiquitin in the 17β-estradiol (E2): estrogen receptor (ER) α network. J Steroid Biochem Mol Biol 127:223–230

    Article  PubMed  Google Scholar 

  64. Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S et al (2010) Estrogen inhibits transforming growth factor β signaling by promoting Smad2/3 degradation. J Biol Chem 285:14747–14755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mid-career Researcher Program (2013R1A2A2A05004195) and SRC Program (Center for Food and Nutritional Genomics, Grant number 2015R1A5A6001906) through NRF Grant funded by the Ministry of Science, ICT and Future Planning, Korea.

Conflicts of interest

The authors confirm that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Additional information

Minji Choi and Harmesh N. Chaudhari have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M., Chaudhari, H.N., Ji, Y.R. et al. Effect of estrogen on expression of prohibitin in white adipose tissue and liver of diet-induced obese rats. Mol Cell Biochem 407, 181–196 (2015). https://doi.org/10.1007/s11010-015-2468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2468-1

Keywords

Navigation