Skip to main content

Advertisement

Log in

Punicalagin attenuates osteoclast differentiation by impairing NFATc1 expression and blocking Akt- and JNK-dependent pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Punicalagin is a bioactive polyphenol that is classified as an ellagitannin. Although punicalagin has been shown to have various pharmacological effects, such as anti-oxidative, anti-inflammatory, and anti-tumor effects, no studies have reported the effects of punicalagin on osteoclasts (OCLs). In this study, we investigated the effects of punicalagin on OCL differentiation by receptor activator of nuclear factor kappa-B ligand in the murine monocytic RAW-D cell line and bone marrow-derived macrophages (BMMs). Treatment with punicalagin significantly inhibited OCL formation from RAW-D cells and BMMs and prevented bone resorption of BMM-derived OCLs. Moreover, punicalagin impaired multinucleation and actin-ring formation in OCLs, and decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a master regulator of OCL differentiation, and concomitantly reduced the expression levels of Src and cathepsin K, which are transcriptionally regulated by NFATc1. The effects of punicalagin on intracellular signaling during the OCL differentiation of BMMs indicated that punicalagin-treated OCLs displayed markedly reduced phosphorylation of Jun N-terminal kinase and Akt, and partially impaired phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and inhibitor of nuclear factor kappa-B alpha compared with untreated OCLs. Thus, punicalagin may affect bone metabolism by inhibiting OCL differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

OCLs:

Osteoclasts

RANKL:

Receptor activator of nuclear factor kappa-B ligand

BMMs:

Bone marrow-derived macrophages

NFATc1:

Nuclear factor of activated T cells cytoplasmic-1

IκBα:

Nuclear factor kappa-B alpha

TRAP:

Tartrate-resistant acid phosphatase

M-CSF:

Macrophage colony-stimulating factor

NF-κB:

Nuclear factor kappa-B

PI3 K:

Phosphatidylinositol 3-kinase

JNK:

Jun N-terminal kinase

Erk:

Extracellular signal-regulated kinase

MAPK:

Mitogen-activated protein kinase

HO-1:

Heme oxygenase-1

NFAT:

Nuclear factor of activated T cells

Abs:

Antibodies

SD:

Standard deviations

PMSF:

Phenylmethylsulfonyl fluoride

TBS-T:

Tris buffered saline with 0.1 % Tween 20

References

  1. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508

    Article  CAS  PubMed  Google Scholar 

  2. Tezuka K, Tezuka Y, Maejima A, Sato T, Nemoto K, Kamioka H, Hakeda Y, Kumegawa M (1994) Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J Biol Chem 269(2):1106–1109

    CAS  PubMed  Google Scholar 

  3. Inaoka T, Bilbe G, Ishibashi O, Tezuka K, Kumegawa M, Kokubo T (1995) Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun 206(1):89–96. doi:10.1006/bbrc.1995.1013

    Article  CAS  PubMed  Google Scholar 

  4. Hayman AR, Cox TM (1994) Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J Biol Chem 269(2):1294–1300

    CAS  PubMed  Google Scholar 

  5. Elford PR, Felix R, Cecchini M, Trechsel U, Fleisch H (1987) Murine osteoblastlike cells and the osteogenic cell MC3T3-E1 release a macrophage colony-stimulating activity in culture. Calcif Tissue Int 41(3):151–156

    Article  CAS  PubMed  Google Scholar 

  6. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176

    Article  CAS  PubMed  Google Scholar 

  7. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95(7):3597–3602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Darnay BG, Ni J, Moore PA, Aggarwal BB (1999) Activation of NF-κB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-κB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem 274(12):7724–7731

    Article  CAS  PubMed  Google Scholar 

  9. Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M (2000) Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-κB ligand (RANKL). J Biol Chem 275(40):31155–31161. doi:10.1074/jbc.M001229200

    Article  CAS  PubMed  Google Scholar 

  10. Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276(1):563–568. doi:10.1074/jbc.M008198200.M008198200

    Article  CAS  PubMed  Google Scholar 

  11. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901. doi:10.1016/S1534580702003696

    Article  CAS  PubMed  Google Scholar 

  12. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106(3):852–859. doi:10.1182/blood-2004-09-3662

    Article  CAS  PubMed  Google Scholar 

  13. Zwerina J, Tzima S, Hayer S, Redlich K, Hoffmann O, Hanslik-Schnabel B, Smolen JS, Kollias G, Schett G (2005) Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 19(14):2011–2013. doi:10.1096/fj.05-4278fje

    CAS  PubMed  Google Scholar 

  14. Sakai E, Shimada-Sugawara M, Nishishita K, Fukuma Y, Naito M, Okamoto K, Nakayama K, Tsukuba T (2012) Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis. J Cell Biochem. doi:10.1002/jcb.23372

    PubMed  Google Scholar 

  15. Cerda B, Llorach R, Ceron JJ, Espin JC, Tomas-Barberan FA (2003) Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. Eur J Nutr 42(1):18–28. doi:10.1007/s00394-003-0396-4

    Article  CAS  PubMed  Google Scholar 

  16. Lin CC, Hsu YF, Lin TC, Hsu FL, Hsu HY (1998) Antioxidant and hepatoprotective activity of punicalagin and punicalin on carbon tetrachloride-induced liver damage in rats. J Pharm Pharmacol 50(7):789–794

    Article  CAS  PubMed  Google Scholar 

  17. Chen B, Tuuli MG, Longtine MS, Shin JS, Lawrence R, Inder T, Michael Nelson D (2012) Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts. Am J Physiol Endocrinol Metab 302(9):E1142–E1152. doi:10.1152/ajpendo.00003.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Xu X, Yin P, Wan C, Chong X, Liu M, Cheng P, Chen J, Liu F, Xu J (2014) Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation. Inflammation 37(3):956–965. doi:10.1007/s10753-014-9816-2

    Article  CAS  PubMed  Google Scholar 

  19. Chen PS, Li JH (2006) Chemopreventive effect of punicalagin, a novel tannin component isolated from Terminalia catappa, on H-ras-transformed NIH3T3 cells. Toxicol Lett 163(1):44–53. doi:10.1016/j.toxlet.2005.09.026

    Article  CAS  PubMed  Google Scholar 

  20. Lee SI, Kim BS, Kim KS, Lee S, Shin KS, Lim JS (2008) Immune-suppressive activity of punicalagin via inhibition of NFAT activation. Biochem Biophys Res Commun 371(4):799–803. doi:10.1016/j.bbrc.2008.04.150

    Article  CAS  PubMed  Google Scholar 

  21. Hu JP, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K (2008) Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-κB and Akt pathways. Eur J Pharmacol 580(1–2):70–79. doi:10.1016/j.ejphar.2007.11.013

    Article  CAS  PubMed  Google Scholar 

  22. Kamiya T, Kobayashi Y, Kanaoka K, Nakashima T, Kato Y, Mizuno A, Sakai H (1998) Fluorescence microscopic demonstration of cathepsin K activity as the major lysosomal cysteine proteinase in osteoclasts. J Biochem 123(4):752–759

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka T, Nonaka G, Nishioka I (1986) Tannins and related compounds. XL. Revision of the structures of punicalin and punicalagin, and isolation and characterization of 2-O-galloylpunicalin from the Bark of Punica granatum L. Chem Pharm Bull 34:650–655

    Article  CAS  Google Scholar 

  24. Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, Yoshida N, Nakayama K (2002) U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277(49):47366–47372. doi:10.1074/jbc.M208284200

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe T, Kukita T, Kukita A, Wada N, Toh K, Nagata K, Nomiyama H, Iijima T (2004) Direct stimulation of osteoclastogenesis by MIP-1alpha: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL. J Endocrinol 180(1):193–201

    Article  CAS  PubMed  Google Scholar 

  26. Narahara S, Matsushima H, Sakai E, Fukuma Y, Nishishita K, Okamoto K, Tsukuba T (2012) Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice. Cell Tissue Res. doi:10.1007/s00441-012-1325-8

    PubMed  Google Scholar 

  27. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342. doi:10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  28. Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM (2010) RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem 285(10):6913–6921. doi:10.1074/jbc.M109.051557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Delaisse JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L (2003) Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech 61(6):504–513. doi:10.1002/jemt.10374

    Article  CAS  PubMed  Google Scholar 

  30. Olajide OA, Kumar A, Velagapudi R, Okorji UP, Fiebich BL (2014) Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia. Mol Nutr Food Res 58(9):1843–1851. doi:10.1002/mnfr.201400163

    Article  CAS  PubMed  Google Scholar 

  31. Maus M, Medgyesi D, Kiss E, Schneider AE, Enyedi A, Szilagyi N, Matko J, Sarmay G (2013) B cell receptor-induced Ca2+ mobilization mediates F-actin rearrangements and is indispensable for adhesion and spreading of B lymphocytes. J Leukoc Biol 93(4):537–547. doi:10.1189/jlb.0312169

    Article  CAS  PubMed  Google Scholar 

  32. Satomi H, Umemura K, Ueno A, Hatano T, Okuda T, Noro T (1993) Carbonic anhydrase inhibitors from the pericarps of Punica granatum L. Biol Pharm Bull 16(8):787–790

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kazuhisa Nishishita for providing recombinant RANKL, and Dr. Eiko Sakai for useful comments. This study was supported in part by Grants-in-Aid for Scientific Research (B) Grant Numbers 25293383, 15H05298, and for Exploratory Research Grant Number 30264055 (T.T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Tsukuba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwatake, M., Okamoto, K., Tanaka, T. et al. Punicalagin attenuates osteoclast differentiation by impairing NFATc1 expression and blocking Akt- and JNK-dependent pathways. Mol Cell Biochem 407, 161–172 (2015). https://doi.org/10.1007/s11010-015-2466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2466-3

Keywords

Navigation