Skip to main content
Log in

Anti-inflammatory effect of procyanidin B1 on LPS-treated THP1 cells via interaction with the TLR4–MD-2 heterodimer and p38 MAPK and NF-κB signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Anti-inflammatory effects of procyanidin B1 have been documented; however, the molecular mechanisms that are involved have not been fully elucidated. Molecular docking models were applied to evaluate the binding capacity of lipopolysaccharide (LPS) and procyanidin B1 with the toll-like receptor (TLR)4/myeloid differentiation factor (MD)-2 complex. LPS-induced production of the proinflammatory cytokine tumor necrosis factor (TNF)-α in a human monocyte cell line (THP1) was measured by ELISA. mRNA expression of MD-2, TLR4, TNF receptor-associated factor (TRAF)-6, and nuclear factor (NF)-κB was measured by real-time PCR with or without an 18-h co-treatment with procyanidin B1. In addition, protein expression of phosphorylated p38 mitogen-activated protein kinase (MAPK) and NF-κB was determined by Western blotting. Structural modeling studies identified Tyr296 in TLR4 and Ser120 in MD-2 as critical sites for hydrogen bonding with procyanidin B1, similar to the sites occupied by LPS. The production of TNF-α was significantly decreased by procyanidin B1 in LPS-treated THP1 cells (p < 0.05). Procyanidin B1 also significantly suppressed levels of phosphorylated p38 MAPK and NF-κB protein, as well as mRNA levels of MD-2, TRAF-6, and NF-κB (all p < 0.05). Procyanidin B1 can compete with LPS for binding to the TLR4–MD-2 heterodimer and suppress downstream activation of p38 MAPK and NF-κB signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Byun EB, Sung NY, Byun EH, Song DS, Kim JK, Park JH, Song BS, Park SH, Lee JW, Byun MW et al (2013) The procyanidin trimer C1 inhibits LPS-induced MAPK and NF-kB signaling through TLR4 in macrophages. Int Immunopharmacol 15:450–456. doi:10.1016/j.intimp.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  2. Hwang SJ, Yoon WB, Lee OH, Cha SJ, Kim JD (2014) Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea. Food Chem 146:71–77. doi:10.1016/j.foodchem.2013.09.035

    Article  CAS  PubMed  Google Scholar 

  3. Serra AT, Rocha J, Sepodes B, Matias AA, Feliciano RP, de Carvalho A, Bronze MR, Duarte CM, Figueira ME (2012) Evaluation of cardiovascular protective effect of different apple varieties—correlation of response with composition. Food Chem 135:2378–2386. doi:10.1016/j.foodchem.2012.07.067

    Article  CAS  PubMed  Google Scholar 

  4. Zhao J, Wang J, Chen Y, Agarwal R (1999) Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3′-gallate as the most effective antioxidant constituent. Carcinogenesis 20:1737–1745

    Article  CAS  PubMed  Google Scholar 

  5. Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG (2000) Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148:187–197

    Article  CAS  PubMed  Google Scholar 

  6. Moini H, Rimbach G, Packer L (2000) Molecular aspects of procyanidin biological activity: disease preventative and therapeutic potentials. Drug Metab Drug Interact 17:237–259

    Article  CAS  Google Scholar 

  7. Terra X, Valls J, Vitrac X, Merrillon JM, Arola L, Ardevol A, Blade C, Fernandez-Larrea J, Pujadas G, Salvado J et al (2007) Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 55:4357–4365. doi:10.1021/jf0633185

    Article  CAS  PubMed  Google Scholar 

  8. Prasain JK, Peng N, Dai Y, Moore R, Arabshahi A, Wilson L, Barnes S, Michael Wyss J, Kim H, Watts RL (2009) Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine 16:233–243. doi:10.1016/j.phymed.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  9. Terra X, Palozza P, Fernandez-Larrea J, Ardevol A, Blade C, Pujadas G, Salvado J, Arola L, Blay MT (2011) Procyanidin dimer B1 and trimer C1 impair inflammatory response signalling in human monocytes. Free Radic Res 45:611–619. doi:10.3109/10715762.2011

    Article  CAS  PubMed  Google Scholar 

  10. Jung M, Triebel S, Anke T, Richling E, Erkel G (2009) Influence of apple polyphenols on inflammatory gene expression. Mol Nutr Food Res 53:1263–1280. doi:10.1002/mnfr.200800575

    Article  CAS  PubMed  Google Scholar 

  11. Brikos C, O’Neill LA (2008) Signalling of toll-like receptors. Handb Exp Pharmacol 183:21–50

    Article  CAS  PubMed  Google Scholar 

  12. Coll RC, O’Neill LA (2010) New insights into the regulation of signalling by toll-like receptors and nod-like receptors. J Innate Immun 2:406–421. doi:10.1159/000315469

    Article  CAS  PubMed  Google Scholar 

  13. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14. doi:10.1093/intimm/dxh186

    Article  CAS  PubMed  Google Scholar 

  14. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  15. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189:1777–1782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Erridge C, Bennett-Guerrero E, Poxton IR (2002) Structure and function of lipopolysaccharides. Microbes Infect 4:837–851

    Article  CAS  PubMed  Google Scholar 

  17. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700. doi:10.1146/annurev.biochem.71.110601.135414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K (2002) Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196:1645–1651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kolek MJ, Carlquist JF, Muhlestein JB, Whiting BM, Horne BD, Bair TL, Anderson JL (2004) Toll-like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. Am Heart J 148:1034–1040

    Article  CAS  PubMed  Google Scholar 

  20. Guo J, Friedman SL (2010) Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair 3:21. doi:10.1186/1755-1536-3-21

    Article  PubMed Central  PubMed  Google Scholar 

  21. Iwami KI, Matsuguchi T, Masuda A, Kikuchi T, Musikacharoen T, Yoshikai Y (2000) Cutting edge: naturally occurring soluble form of mouse toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol 165:6682–6686

    Article  CAS  PubMed  Google Scholar 

  22. Janssens S, Burns K, Tschopp J, Beyaert R (2002) Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol 12:467–471

    Article  CAS  PubMed  Google Scholar 

  23. Ohta S, Bahrun U, Tanaka M, Kimoto M (2004) Identification of a novel isoform of MD-2 that downregulates lipopolysaccharide signaling. Biochem Biophys Res Commun 323:1103–1108

    Article  CAS  PubMed  Google Scholar 

  24. Palsson-McDermott EM, Doyle SL, McGettrick AF, Hardy M, Husebye H, Banahan K, Gong M, Golenbock D, Espevik T, O’Neill LA (2009) TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol 10:579–586. doi:10.1038/ni.1727

    Article  CAS  PubMed  Google Scholar 

  25. Hosoi S, Shimizu E, Arimori K, Okumura M, Hidaka M, Yamada M, Sakushima A (2008) Analysis of CYP3A inhibitory components of star fruit (Averrhoa carambola L.) using liquid chromatography-mass spectrometry. J Nat Med 62:345–348. doi:10.1007/s11418-008-0239-y

    Article  CAS  PubMed  Google Scholar 

  26. Lima Mdos S, Silani Ide S, Toaldo IM, Correa LC, Biasoto AC, Pereira GE, Bordignon-Luiz MT, Ninow JL (2014) Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil. Food Chem 161:94–103. doi:10.1016/j.foodchem.2014.03.109

    Article  PubMed  Google Scholar 

  27. Shimada T, Tokuhara D, Tsubata M, Kamiya T, Kamiya-Sameshima M, Nagamine R, Takagaki K, Sai Y, Miyamoto K, Aburada M (2012) Flavangenol (pine bark extract) and its major component procyanidin B1 enhance fatty acid oxidation in fat-loaded models. Eur J Pharmacol 677:147–153. doi:10.1016/j.ejphar.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  28. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082. doi:10.1016/j.cell.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  29. Ohto U, Fukase K, Miyake K, Satow Y (2007) Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316:1632–1634

    Article  CAS  PubMed  Google Scholar 

  30. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195. doi:10.1038/nature07830

    Article  CAS  PubMed  Google Scholar 

  31. Sung NY, Yang MS, Song DS, Kim JK, Park JH, Song BS, Park SH, Lee JW, Park HJ, Kim JH et al (2013) Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages. Biochem Biophys Res Commun 438:122–128. doi:10.1016/j.bbrc.2013.07.038

    Article  CAS  PubMed  Google Scholar 

  32. Chacon MR, Ceperuelo-Mallafre V, Maymo-Masip E, Mateo-Sanz JM, Arola L, Guitierrez C, Fernandez-Real JM, Ardevol A, Simon I, Vendrell J (2009) Grape-seed procyanidins modulate inflammation on human differentiated adipocytes in vitro. Cytokine 47:137–142. doi:10.1016/j.cyto.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  33. Gray P, Michelsen KS, Sirois CM, Lowe E, Shimada K, Crother TR, Chen S, Brikos C, Bulut Y, Latz E et al (2010) Identification of a novel human MD-2 splice variant that negatively regulates lipopolysaccharide-induced TLR4 signaling. J Immunol 184:6359–6366. doi:10.4049/jimmunol.0903543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sung NY, Yang MS, Song DS, Byun EB, Kim JK, Park JH, Song BS, Lee JW, Park SH, Park HJ et al (2013) The procyanidin trimer C1 induces macrophage activation via NF-kB and MAPK pathways, leading to Th1 polarization in murine splenocytes. Eur J Pharmacol 714:218–228. doi:10.1016/j.ejphar.2013.02.059

    Article  CAS  PubMed  Google Scholar 

  35. Diya Z, Lili C, Shenglai L, Zhiyuan G, Jie Y (2008) Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun 14:99–107. doi:10.1177/1753425907088244

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Young Starting Foundation of the First Affiliated Hospital, Dalian Medical University (QN2012008) and the 2013 Dalian Science and Technology Planning Project (guidance project).

Conflict of interest

The authors do not have any conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Li, R., Li, N. et al. Anti-inflammatory effect of procyanidin B1 on LPS-treated THP1 cells via interaction with the TLR4–MD-2 heterodimer and p38 MAPK and NF-κB signaling. Mol Cell Biochem 407, 89–95 (2015). https://doi.org/10.1007/s11010-015-2457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2457-4

Keywords

Navigation