Skip to main content

Advertisement

Log in

Response of endothelial cells and pericytes to hypoxia and erythropoietin in a co-culture assay dedicated to soft tissue repair

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The increasing mean life expectancy of the citizens of the western world countries leads to an increase of the age-related diseases, among them soft tissue defects exhibiting inadequate healing. In order to develop new therapeutic strategies to support disturbed soft tissue repair, there is a strong need of sophisticated in vitro assays. A new assay combining scratch wounding with co-cultures of primary human microvascular endothelial cells (HDMEC) and pericytes (HPC) focuses on basic characteristics of cell interaction against the background of soft tissue repair. The cell parameters proliferation, migration and differentiation, and the release of monocyte chemoattractant protein-1 (MCP-1) were analysed in response to hypoxia (pO2 < 5 mmHg) and to erythropoietin (EPO; 50 IU/ml), a glycoprotein hormone having shown promising effects in soft tissue repair. As basic characteristics of the assay, direct cell contact in co-culture led to a weakened proliferation of both cell types, an increase of the percentage of myofibroblast-like pericytes and to a higher release of MCP-1. Hypoxia caused a proliferation decrease of HPC in co-culture, which was slightly attenuated by EPO. Hypoxia also reduced the MCP-1 release of co-cultured cells, when EPO had been added. In addition, EPO had a rather positive effect on HPC migration under hypoxia. These in vitro results allow new insights into the interaction of pericytes with endothelial cells in the context of soft tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Statistisches Bundesamt, 12. koordinierte Bevölkerungsvorausberechnung. http://www.destatis.de/bevoelkerungspyramide. Accessed 24 Feb 2015

  2. Dill-Müller D, Tilgen W (2005) Bewährte und aktuelle Verfahren in der Wundheilung. Hautarzt 56:411–422

    Article  PubMed  Google Scholar 

  3. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  4. Tandara AA, Mustoe TA (2004) Oxygen in wound healing-more than a nutrient. World J Surg 28(3):294–300

    Article  PubMed  Google Scholar 

  5. Hopf HW, Rollins MD (2007) Wounds: an overview of the role of oxygen. Antioxid Redox Signal 9(8):1183–1192

    Article  CAS  PubMed  Google Scholar 

  6. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163(2):257–268

    Article  CAS  PubMed  Google Scholar 

  8. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200:500–503

    Article  CAS  PubMed  Google Scholar 

  9. Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Ann Rev Pathol Mech Dis 8:241–276

    Article  CAS  Google Scholar 

  10. Schwarz F, Jennewein M, Bubel M, Holstein JH, Pohlemann T, Oberringer M (2013) Soft tissue fibroblasts from well healing and chronic human wounds show different rates of myofibroblasts in vitro. Mol Biol Rep 40:1721–1733

    Article  CAS  PubMed  Google Scholar 

  11. Enoch S, Price PE (2004) Should alternative endpoints be considered to evaluate outcomes in chronic recalcitrant wounds? World Wide Wounds October 2004. http://www.worldwidewounds.com/2004/october/Enoch-Part2/Alternative-Enpoints-To-Healing.html. Accessed 30 Apr 2015

  12. Busuioc CJ, Mogosanu GD, Popescu FC, Lascar I, Parvanescu H, Mogoanta L (2013) Phases of the cutaneous angiogenesis process in experimental third-degree skin burns: histological and immunohistochemical study. Rom J Morphol Embryol 54(1):163–171

    PubMed  Google Scholar 

  13. Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51(5):363–369

    Article  CAS  PubMed  Google Scholar 

  14. Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    Article  CAS  PubMed  Google Scholar 

  15. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  16. Sims DE (1986) The pericyte-a review. Tissue Cell 18(2):153–174

    Article  CAS  PubMed  Google Scholar 

  17. Dohgu S, Banks WA (2013) Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood-brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids Barriers CNS 10:23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tarallo S, Beltramo E, Berrone E, Porta M (2012) Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol 49(Suppl 1):S141–S151

    Article  PubMed  Google Scholar 

  19. Oberringer M, Meins C, Bubel M, Pohlemann T (2007) A new in vitro wound model based on the co-culture of human dermal microvascular endothelial cells and human dermal fibroblasts. Biol Cell 99(4):197–207

    Article  CAS  PubMed  Google Scholar 

  20. Breit S, Bubel M, Pohlemann T, Oberringer M (2011) Erythropoietin ameliorates the reduced migration of human fibroblasts during in vitro hypoxia. J Physiol Biochem 67:1–13

    Article  CAS  PubMed  Google Scholar 

  21. Galeano M, Altavilla D, Bitto A, Minutoli L, Calò M, Lo Cascio P, Polito F, Giugliano G, Squadrito G, Mioni C, Giuliani D, Venuti FS, Squadrito F (2006) Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med 34:1139–1146

    Article  CAS  PubMed  Google Scholar 

  22. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  23. Wood S, Jayaraman V, Huelsmann EJ, Bonish B, Burgad D, Sivaramakrishnan G, Qin S, DiPietro LA, Zloza A, Zhang C, Shafikhani SH (2014) Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLOS One 9(3):e91574

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69(4):513–521

    CAS  PubMed  Google Scholar 

  25. Kim MS, Song HJ, Lee SH, Lee CK (2014) Comparative study of various growth factors and cytokines on type I collagen and hyaluronan production in human dermal fibroblasts. J Cosmet Dermatol 13(1):44–51

    Article  PubMed  Google Scholar 

  26. Pu KM, Sava P, Gonzalez AL (2013) Microvascular targets for anti-fibrotic therapeutics. Yale J Biol Med 86(4):537–554

    PubMed Central  PubMed  Google Scholar 

  27. Wong VW, Rustad KC, Akaishi S, Sorkin M, Glotzbach JP, Januszyk M, Nelson ER, Levi K, Paterno J, Vial IN, Kuang AA, Longaker MT, Gurtner GC (2011) Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 18(1):148–152

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wang J, Hori K, Ding J, Huang Y, Kwan P, Ladak A, Tredget EE (2011) Toll-like receptors expressed by dermal fibroblasts contribute to hypertrophic scarring. J Cell Physiol 226(5):1265–1273

    Article  CAS  PubMed  Google Scholar 

  29. Oberringer M, Jennewein M, Motsch SE, Pohlemann T, Seekamp A (2005) Different cell cycle responses of wound healing protagonists to transient in vitro hypoxia. Histochem Cell Biol 123(6):595–603

    Article  CAS  PubMed  Google Scholar 

  30. Purins K, Enblad P, Sandhagen B, Lewén A (2010) Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of neurovent-PTO and licox sensors. Acta Neurochir 152(4):681–688

    Article  PubMed  Google Scholar 

  31. Orlidge A, D`Amore PA (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105(3):1455–1462

    Article  CAS  PubMed  Google Scholar 

  32. Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 109(1):309–315

    Article  CAS  PubMed  Google Scholar 

  33. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14:1581–1593

    Article  CAS  PubMed  Google Scholar 

  34. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dulmovits BM, Herman IM (2012) Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 11:1800–1812

    Article  Google Scholar 

  36. Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37(3):315–321

    Article  CAS  PubMed  Google Scholar 

  37. Kapoor M, Liu S, Huh K, Parapuram S, Kennedy L, Leask A (2008) Connective tissue growth factor promoter activity in normal and wounded skin. Fibrogenesis Tissue Repair 1(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  38. Rajkumar VS, Howell K, Csiszar K, Denton CP, Black CM, Abraham DJ (2005) Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res Ther 7(5):R1113–R1123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Popescu FC, Busuioc CJ, Mogosanu GD, Pop OT, Parvanescu H, Lascar I, Nicolae CI, Mogoanta L (2011) Pericytes and myofibroblasts reaction in experimental thermal third degree skin burns. Rom J Morphol Embryol 52(3):1011–1017

    PubMed  Google Scholar 

  40. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    Article  PubMed  Google Scholar 

  41. Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL, Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, Duffield JS, Lin SL (2011) Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 80:1170–1181

    Article  CAS  PubMed  Google Scholar 

  42. Wang XL, Xue XD (2009) Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats. Zhonghua Er Ke Za Zhi 47(6):446–451

    PubMed  Google Scholar 

  43. Chen CW, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, Corselli M, Crisan M, Saparov A, Tobita K, Péault B, Huard J (2013) Human pericytes for ischemic heart repair. Stem Cells 31(2):305–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Paquet-Fifield S, Schlüter H, Li A, Aitken T, Gangatirkar P, Blashki D, Koelmeyer R, Pouliot N, Palatsides M, Ellis S, Brouard N, Zannettino A, Saunders N, Thompson N, Li J, Kaur P (2009) A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Invest 119(9):2795–2806

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oberringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, G., Bubel, M., Pohlemann, T. et al. Response of endothelial cells and pericytes to hypoxia and erythropoietin in a co-culture assay dedicated to soft tissue repair. Mol Cell Biochem 407, 29–40 (2015). https://doi.org/10.1007/s11010-015-2451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2451-x

Keywords

Navigation