Molecular and Cellular Biochemistry

, Volume 403, Issue 1–2, pp 25–31 | Cite as

Foxp3 regulates ratio of Treg and NKT cells in a mouse model of asthma



Chronic inflammatory disorder of the airways causes asthma. Regulatory T cells (Treg cells) and Natural killer T cells (NKT cells) both play critical roles in the pathogenesis of asthma. Activation of Treg cells requires Foxp3, whereas whether Foxp3 may regulate the ratio of Treg and NKT cells to affect asthma is uncertain. In an ovalbumin (OVA)-induced mouse model of asthma, we either increased Treg cells by lentivirus-mediated forced expression of exogenous Foxp3, or increased NKT cells by stimulation with its activator α-GalCer. We found that the CD4+CD25+ Treg cells increased by forced Foxp3 expression, and decreased by α-GalCer, while the CD3+CD161+ NKT cells decreased by forced Foxp3 expression, and increased by α-GalCer. Moreover, forced Foxp3 expression, but not α-GalCer, significantly alleviated the hallmarks of asthma. Furthermore, forced Foxp3 increased levels of IL_10 and TGFβ1, and α-GalCer increased levels of IL_4 and INFγ in the OVA-treated lung. Taken together, our study suggests that Foxp3 may activate Treg cells and suppress NKT cells in asthma. Treg and NKT cells may antagonize the effects of each other in asthma.


OVA Asthma Regulatory T cells (Treg cells) Natural killer T cells (NKT cells) Foxp3 α-GalCer 



This work was financially supported by Shanghai Municipal Health Bureau of China (NO. 20124147) and the allergy national clinical specialty construction project of the national health and family planning commission of China.

Conflict of interest

The authors have declared that no competing interests exist.


  1. 1.
    Holgate ST (2008) Pathogenesis of asthma. Clin Exp Allergy 38:872–897. doi: 10.1111/j.1365-2222.2008.02971.x CrossRefPubMedGoogle Scholar
  2. 2.
    Holgate ST (2008) The airway epithelium is central to the pathogenesis of asthma. Allergol Int 57:1–10. doi: 10.2332/allergolint.R-07-154 CrossRefPubMedGoogle Scholar
  3. 3.
    Chang YJ, DeKruyff RH, Umetsu DT (2013) The role of type 2 innate lymphoid cells in asthma. J Leukoc Biol 94:933–940. doi: 10.1189/jlb.0313127 CrossRefPubMedGoogle Scholar
  4. 4.
    Iwamura C, Nakayama T (2010) Role of NKT cells in allergic asthma. Curr Opin Immunol 22:807–813. doi: 10.1016/j.coi.2010.10.008 CrossRefPubMedGoogle Scholar
  5. 5.
    Umetsu DT, Dekruyff RH (2010) Natural killer T cells are important in the pathogenesis of asthma: the many pathways to asthma. J Allergy Clin Immunol 125:975–979. doi: 10.1016/j.jaci.2010.02.006 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Meyer EH, DeKruyff RH, Umetsu DT (2008) T cells and NKT cells in the pathogenesis of asthma. Annu Rev Med 59:281–292. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  7. 7.
    Schreiber TH, Wolf D, Tsai MS, Chirinos J, Deyev VV, Gonzalez L, Malek TR, Levy RB, Podack ER (2010) Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest 120:3629–3640. doi: 10.1172/JCI42933 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Doganci A, Eigenbrod T, Krug N, De Sanctis GT, Hausding M, Erpenbeck VJ, el Haddad B, Lehr HA, Schmitt E, Bopp T, Kallen KJ, Herz U, Schmitt S, Luft C, Hecht O, Hohlfeld JM, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T, Rose-John S, Renz H, Neurath MF, Galle PR, Finotto S (2005) The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J Clin Invest 115:313–325. doi: 10.1172/JCI22433 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Trzonkowski P, Szmit E, Mysliwska J, Mysliwski A (2006) CD4+CD25+ T regulatory cells inhibit cytotoxic activity of CTL and NK cells in humans-impact of immunosenescence. Clin Immunol 119:307–316. doi: 10.1016/j.clim.2006.02.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Larche M (2007) Regulatory T cells in allergy and asthma. Chest 132:1007–1014. doi: 10.1378/chest.06-2434 CrossRefPubMedGoogle Scholar
  11. 11.
    Robinson DS (2009) Regulatory T cells and asthma. Clin Exp Allergy 39:1314–1323. doi: 10.1111/j.1365-2222.2009.03301.x CrossRefPubMedGoogle Scholar
  12. 12.
    Lambrecht BN, Hammad H (2013) Asthma: the importance of dysregulated barrier immunity. Eur J Immunol 43:3125–3137. doi: 10.1002/eji.201343730 CrossRefPubMedGoogle Scholar
  13. 13.
    van Oosterhout AJ, Bloksma N (2005) Regulatory T-lymphocytes in asthma. Eur Respir J 26:918–932. doi: 10.1183/09031936.05.00011205 CrossRefPubMedGoogle Scholar
  14. 14.
    Durrant DM, Metzger DW (2010) Emerging roles of T helper subsets in the pathogenesis of asthma. Immunol Invest 39:526–549. doi: 10.3109/08820131003615498 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Pyzik M, Piccirillo CA (2007) TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J Leukoc Biol 82:335–346. doi: 10.1189/jlb.1006644 CrossRefPubMedGoogle Scholar
  16. 16.
    Palomares O, Ruckert B, Jartti T, Kucuksezer UC, Puhakka T, Gomez E, Fahrner HB, Speiser A, Jung A, Kwok WW, Kalogjera L, Akdis M, Akdis CA (2012) Induction and maintenance of allergen-specific FOXP3+ Treg cells in human tonsils as potential first-line organs of oral tolerance. J Allergy Clin Immunol 129:510-20, 520 e1-9. doi:  10.1016/j.jaci.2011.09.031
  17. 17.
    Khan IF, Hirata RK, Russell DW (2011) AAV-mediated gene targeting methods for human cells. Nat Protoc 6:482–501. doi: 10.1038/nprot.2011.301 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Hajitou A, Rangel R, Trepel M, Soghomonyan S, Gelovani JG, Alauddin MM, Pasqualini R, Arap W (2007) Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat Protoc 2:523–531. doi: 10.1038/nprot.2007.51 CrossRefPubMedGoogle Scholar
  19. 19.
    Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1:1412–1428. doi: 10.1038/nprot.2006.207 CrossRefPubMedGoogle Scholar
  20. 20.
    Lee HH, Meyer EH, Goya S, Pichavant M, Kim HY, Bu X, Umetsu SE, Jones JC, Savage PB, Iwakura Y, Casasnovas JM, Kaplan G, Freeman GJ, DeKruyff RH, Umetsu DT (2010) Apoptotic cells activate NKT cells through T cell Ig-like mucin-like-1 resulting in airway hyperreactivity. J Immunol 185:5225–5235. doi: 10.4049/jimmunol.1001116 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Pichavant M, Goya S, Hamelmann E, Gelfand EW, Umetsu DT (2007) Animal models of airway sensitization. Curr Protoc Immunol Chapter 15:Unit 15–18. doi:  10.1002/0471142735.im1518s79
  22. 22.
    Song X, Xie S, Lu K, Wang C (2014) Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation. doi: 10.1007/s10753-014-9954-6 Google Scholar
  23. 23.
    Wilson JM (2004) Adeno-associated virus and lentivirus pseudotypes for lung-directed gene therapy. Proc Am Thorac Soc 1:309–314. doi: 10.1513/pats.200409-041MS CrossRefPubMedGoogle Scholar
  24. 24.
    Yan-ming L, Lan-fang C, Chen L, Ya-qin L, Wei C, Wen-ming Z (2012) The effect of specific immunotherapy on natural killer T cells in peripheral blood of house dust mite-sensitized children with asthma. Clin Dev Immunol 2012:148262. doi: 10.1155/2012/148262 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Pediatrics, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Allergy, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations