Skip to main content
Log in

The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180–200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H2O), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO2 , O2 and H2O2, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NMDA:

N-methyl-D-aspartate

DL-Hcy TLHC:

DL-homocysteine thiolactone

AMPA:

α-Amino-3-hydrohy-5-methyl-4-izoxazolepropionate

NR1:

Glycine-binding subunit

NR2:

Glutamate-binding subunit

CNS:

Central nervous system

Hcy:

Homocysteine

HHcy:

Hyperhomocysteinemia

MMP-9:

Metalloproteinase-9

CF:

Coronary flow

dp/dt max:

Maximum rate of pressure development in the left ventricle

dp/dt mix:

Minimum rate of pressure development in the left ventricle

SLVP:

Systolic left ventricular pressure

DLVP:

Diastolic left ventricular pressure

HR:

Heart rate

TBARS:

Thiobarbituric acid reactive substances

References

  1. Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharm Rev 62:405–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1985) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  Google Scholar 

  3. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  CAS  PubMed  Google Scholar 

  4. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  5. Maren S, Baudry M (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol Learn Mem 63:1–18

    Article  CAS  PubMed  Google Scholar 

  6. Nasstrom J, Boo E, Stahlberg M, Berge OG (1993) Tissue distribution of two NMDA receptor antagonists, [3H]CGS 19755 and [3H]MK-801, after intrathecal injection in mice. Pharmacol Biochem Behav 44:9–15

    Article  CAS  PubMed  Google Scholar 

  7. Leung JC, Travis BR, Verlander JW, Sandhu SK, Yang SG, Zea AH, Weiner ID, Silverstein DM (2002) Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system. Am J Physiol Regul Integr Comp Physiol 283:964–971

    Google Scholar 

  8. Kovacic P, Somanathan R (2010) Clinical physiology and mechanism of dizocilpine (MK-801): electron transfer, radicals, redox metabolites and bioactivity. Oxid Med Cell Longev 3:13–22

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jakubowski H (2008) The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease. J Physiol Pharmacol 59:155–167

    PubMed  Google Scholar 

  10. Kumar A, Khan SA, Parvez A, Zaheer MS, Rabbani MU, Zafar L (2011) The prevalence of hyperhomocysteinemia and its correlation with conventional risk factors in young patients with myocardial infarction in a tertiary care centre of India. Biomed Res 22:225–229

    CAS  Google Scholar 

  11. Gupta S, Gudapati R, Gaurav K, Bhise M (2013) Emerging risk factors for cardiovascular diseases: Indian context. Indian J Endocrinol Metab 17:806–814

    Article  PubMed Central  PubMed  Google Scholar 

  12. McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56:111–128

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Milani RV, Lavie CJ (2008) Homocysteine: the Rubik’s cube of cardiovascular risk factors. Mayo Clin Proc 83:1200–1202

    Article  PubMed  Google Scholar 

  14. Vacek TP, Vacek JC, Tyagi SC (2012) Mitochondrial mitophagic mechanisms of myocardial matrix metabolism and remodelling. Arch Physiol Biochem 118:31–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cheng Y, Jin Y, Unverzagt FW, Su L, Yang L, Ma F, Hake AM, Kettler C, Chen C, Liu J, Bian J, Li P, Murrell JR, Hendrie HC, Gao S (2014) The relationship between cholesterol and cognitive function is homocysteine-dependent. Clin Interv Aging 23:1823–1829

    Google Scholar 

  16. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274:1049–1057

    Article  CAS  PubMed  Google Scholar 

  17. Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325:1202

    Article  PubMed Central  PubMed  Google Scholar 

  18. Waśkiewicz A, Sygnowska E, Broda G (2012) Homocysteine concentration and the risk of death in the adult polish population. Kardiol Pol 70:897–902

    PubMed  Google Scholar 

  19. Baletić A, Mirković D, Antonijević N, Djordjević V, Šango V, Jakovljević B, Peruničić J, Ilić M, Vasiljević Z, Majkić-Singh N (2009) Incidence of hyperhomocysteinemia and MTHFR C677T polymorphism among young patients with acute myocardial infarction. J Med Biochem 28:41–45

    Google Scholar 

  20. Cai B, Shan L, Gong D, Pan Z, Ai J, Xu C, Lu Y, Yang B (2009) Homocysteine modulates sodium channel currents in human atrial myocytes. Toxicology 256:201–206

    Article  CAS  PubMed  Google Scholar 

  21. Gao X, Xu X, Pang J, Zhang C, Ding JM, Peng X, Liu Y, Cao JM (2007) NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardiomyocytes. Physiol Res 56:559–569

    CAS  PubMed  Google Scholar 

  22. Sundar IK, Caito S, Yao H, Rahman I (2010) Oxidative stress, thiol redox signaling methods in epigenetics. Methods Enzymol 474:213–244

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J, Cai L (2014) Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev 2014:641979

    PubMed Central  PubMed  Google Scholar 

  24. McCully KS (1996) Homocysteine and vascular disease. Nat Med 2:386–389

    Article  CAS  PubMed  Google Scholar 

  25. Poddar R, Paul S (2009) Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 110:1095–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shin JY, Ahn YH, Paik MJ, Park HJ, Sohn YH, Lee PH (2012) Elevated homocysteine by levodopa is detrimental to neurogenesis in parkinsonian model. PLoS One 7:e50496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Moshal KS, Singh M, Sen U et al (2006) Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. Am J Physiol Heart Circ Physiol 291:2825–2835

    Article  Google Scholar 

  28. Zivkovic V, Jakovljevic V, Pechanova O, Srejovic I, Joksimovic J, Selakovic D, Barudzic N, Djuric DM (2013) Effects of DL-homocysteine thiolactone on cardiac contractility, coronary flow, and oxidative stress markers in the isolated rat heart: the role of different gasotransmitters. Biomed Res Int 2013:318471

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  30. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  31. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 123–132

    Google Scholar 

  32. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Cui L, Joseph J, Jiang B, Pimental D, Handy DE, Liao R, Loscalzo J (2012) Homocysteine induces cardiomyocyte dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J Mol Cell Cardiol 52:753–760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:890–897

    Article  Google Scholar 

  35. Moshal KS, Kumar M, Tyagi N, Mishra PK, Metreveli N, Rodriguez WE, Tyagi SC (2009) Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1. Am J Physiol Heart Circ Physiol 296:887–892

    Article  Google Scholar 

  36. Kennedy RH, Owings R, Shekhawat N, Joseph J (2004) Acute negative inotropic effects of homocysteine are mediated via the endothelium. Am J Physiol Heart Circ Physiol 287:812–817

    Article  Google Scholar 

  37. Oosterbaan AM, Bon E, Steegers-Theunissen RP, Van Der Steen AF, Ursem NT (2012) Homocysteine exposure affects early hemodynamic parameters of embryonic chicken heart function. Anat Rec (Hoboken) 295:961–967

    Article  CAS  Google Scholar 

  38. Hildreth CM, Goodchild AK (2010) Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat. BMC Neurosci 11:128

    Article  PubMed Central  PubMed  Google Scholar 

  39. Givvimani S, Qipshidze N, Tyagi N, Mishra PK, Sen U, Tyagi SC (2011) Synergism between arrhythmia and hyperhomo-cysteinemia in structural heart disease. Int J Physiol Pathophysiol Pharmacol 3:107–119

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Tyagi N, Mishra PK, Tyagi SC (2009) Homocysteine, hydrogen sulfide (H2S) and NMDA-receptor in heart failure. Indian J Biochem Biophys 46:441–446

    CAS  PubMed  Google Scholar 

  41. Zivkovic V, Jakovljevic V, Djordjevic D, Vuletic M, Barudzic N, Djuric D (2012) The effects of homocysteine-related compounds on cardiac contractility, coronary flow, and oxidative stress markers in isolated rat heart. Mol Cell Biochem 370:59–67

    Article  CAS  PubMed  Google Scholar 

  42. Familtseva A, Kalani A, Chaturvedi P, Tyagi N, Metreveli N, Tyagi SC (2014) Mitochondrial mitophagy in mesenteric artery remodeling in hyperhomocysteinemia. Physiol Rep 2:e00283

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kolling J, Scherer EB, da Cunha AA, da Cunha MJ, Wyse AT (2011) Homocysteine induces oxidative-nitrative stress in heart of rats: prevention by folic acid. Cardiovasc Toxicol 11:67–73

    Article  CAS  PubMed  Google Scholar 

  44. da Cunha MJ, da Cunha AA, Ferreira AG et al (2012) Physical exercise reverses glutamate uptake and oxidative stress effects of chronic homocysteine administration in the rat. Int J Dev Neurosci 30:69–74

    Article  PubMed  Google Scholar 

  45. da Cunha AA, Scherer E, da Cunha MJ, Schmitz F, Machado FR, Lima DD, Delwing D, Wyse AT (2012) Acute hyperhomocysteinemia alters the coagulation system and oxidative status in the blood of rats. Mol Cell Biochem 360:205–214

    Article  CAS  PubMed  Google Scholar 

  46. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative transsulfuration reactions. J Biol Chem 284:22457–22466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Vandiver M, Snyder SH (2012) Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med (Berl) 90:255–263

    Article  CAS  Google Scholar 

  48. Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641

    Article  CAS  PubMed  Google Scholar 

  49. Sharp CD, Houghton J, Elrod JW, Warren A, Jackson TH 4th, Jawahar A, Nanda A, Minagar A, Alexander JS (2005) N-methyl-D-aspartate receptor activation in human cerebral endothelium promotes intracellular oxidant stress. Am J Physiol Heart Circ Physiol 288:1893–1899

    Article  Google Scholar 

  50. Ozyurt B, Ozyurt H, Akpolat N, Erdogan H, Sarsilmaz M (2007) Oxidative stress in prefrontal cortex of rat exposed to MK-801 and protective effects of CAPE. Prog Neuropsychopharmacol Biol Psychiatry 31:832–838

    Article  CAS  PubMed  Google Scholar 

  51. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  CAS  PubMed  Google Scholar 

  52. Norsidah KZ, Asmadi AY, Azizi A, Faizah O, Kamisah Y (2013) Palm tocotrienol-rich fraction reduced plasma homocysteine and heart oxidative stress in rats fed with a high-methionine diet. J Physiol Biochem 69:441–449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by Grant No. 175043 from the Ministry of Science and Technical Development of the Republic of Serbia, and the Junior Project 04/2011, Faculty of Medical Sciences, University of Kragujevac, Serbia.

Conflict of interests

None of the authors of the present study has any actual or potential conflicts of interest to disclose, including financial, personal, or other relationships with specific persons or organisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jakovljevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srejovic, I., Jakovljevic, V., Zivkovic, V. et al. The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart. Mol Cell Biochem 401, 97–105 (2015). https://doi.org/10.1007/s11010-014-2296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2296-8

Keywords

Navigation