Skip to main content

Advertisement

Log in

miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Myocardial hypoxia is a major cause of cardiac dysfunction due to its triggering cell injury and apoptosis. Deregulated microRNAs and their roles in cardiomyocyte apoptosis have attracted much attention. miR-133a is among the most abundant of the miRNAs present in the normal heart, and significant changes in expression of miR-133a were observed in response to anoxia stress. However, the role of this microRNA in myocardial hypoxia-induced apoptosis is presently unclear. In this study, we identified that miR-133a expression was down-regulated in hypoxic H9c2 cells, and its expression gradually decreased with hypoxia time. Functional analysis revealed that miR-133a attenuated hypoxia-induced apoptosis. We further detected expression of apoptosis-related proteins. The results showed that miR-133a suppressed the expression of apoptotic proteins caspase-8, caspase-9, and caspase-3 significantly, while improved the expression of Bcl-2. Bioinformatics analysis, combined with dual-luciferase reporter analysis, was applied to determine that miR-133a directly was binded to the 3′-untranslated region (3′-UTR) of TAGLN2 mRNA and suppressed expression at both transcriptional and translational levels. Next, TAGLN2 knockout was used to reveal that TAGLN2 modulated hypoxia-induced apoptosis via caspase-8 apoptotic pathway. Taken together, our data demonstrated the roles of miR-133a in hypoxia-induced apoptotic and implicate its potential in cardiac dysfunctions therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

miR-133a:

microRNA-133a

UTR:

Untranslated region

TAGLN2:

Transgelin 2

References

  1. Santos CX, Anilkumar N et al (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50:777–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Cassavaugh J, Lounsbury KM (2011) Hypoxia-mediated biological control. J Cell Biochem 112:735–744

    Article  CAS  PubMed  Google Scholar 

  3. Lu J, Getz G et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  4. Johnson SM, Grosshans H et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  5. Harfe BD, McManus MT et al (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102:10898–10903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hornstein E, Mansfield JH et al (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438:671–674

    Article  CAS  PubMed  Google Scholar 

  7. Harris KS, Zhang Z et al (2006) Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA 103:2208–2213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen CZ, Li L et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  CAS  PubMed  Google Scholar 

  9. Drawnel FM, Wachten D et al (2012) Mutual antagonism between IP(3)RII and miRNA-133a regulates calcium signals and cardiac hypertrophy. J Cell Biol 199:783–798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fang J, Song XW et al (2012) Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis 17:410–423

    Article  CAS  PubMed  Google Scholar 

  11. Hu S, Huang M et al (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122:S124–S131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhou M, Cai J et al (2013) MiR-17-92 cluster is a novel regulatory gene of cardiac ischemic/reperfusion injury. Med Hypotheses 81:108–110

    Article  CAS  PubMed  Google Scholar 

  13. Bostjancic E, Zidar N et al (2010) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169

    Article  CAS  PubMed  Google Scholar 

  14. Dong S, Cheng Y et al (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284:29514–29525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Qian L, Van Laake LW et al (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208:549–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Rao PK, Missiaglia E et al (2010) Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J 24:3427–3437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rao PK, Kumar RM et al (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 103:8721–8726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Biggar KK, Kornfeld SF et al (2012) MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia. Genomics Proteomics Bioinform 10:302–309

    Article  CAS  Google Scholar 

  19. Liu B, Che W et al (2013) SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell Physiol Biochem 32:655–662

    Article  PubMed  Google Scholar 

  20. Ji F, Zhang H et al (2013) MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1. Bone 56:220–226

    Article  CAS  PubMed  Google Scholar 

  21. Afshari A, Uhde-Stone C et al (2014) Live visualization and quantification of pathway signaling with dual fluorescent and bioluminescent reporters. Biochem Biophys Res Commun 448(3):281–286

    Article  CAS  PubMed  Google Scholar 

  22. Doyle EL, Booher NJ et al (2012) TAL Effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucl Acids Res 40:W117–W122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. McCormick RI, Blick C et al (2013) miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br J Cancer 108:1133–1142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yuan S, Yu X et al (2011) The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3. Structure 19:1084–1096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang K, Liu F et al (2013) miR-874 regulates myocardial necrosis by targeting caspase-8. Cell Death Dis 4:e709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yoshino H, Chiyomaru T et al (2011) The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer 104:808–818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Carlson DF, Tan W et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Li P (2010) MicroRNAs in cardiac apoptosis. J Cardiovasc Transl Res 3:219–224

    Article  PubMed  Google Scholar 

  30. He S, Liu P et al (2013) miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun 441:763–769

    Article  CAS  PubMed  Google Scholar 

  31. Suh JH, Choi E et al (2012) Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3beta protein expression. Biochem Biophys Res Commun 423:404–410

    Article  CAS  PubMed  Google Scholar 

  32. Kuwabara Y, Ono K et al (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4:446–454

    Article  CAS  PubMed  Google Scholar 

  33. He B, Xiao J et al (2011) Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 18:22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Shan YX, Liu TJ et al (2003) Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J Mol Cell Cardiol 35:1135–1143

    Article  CAS  PubMed  Google Scholar 

  35. Tang Y, Zheng J et al (2009) MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J 50:377–387

    Article  CAS  PubMed  Google Scholar 

  36. Xu C, Lu Y et al (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120:3045–3052

    Article  CAS  PubMed  Google Scholar 

  37. Tu S, Liu ZQ et al (2012) Inhibitory effect of p53 upregulated modulator of apoptosis targeting siRNA on hypoxia/reoxygenation-induced cardiomyocyte apoptosis in rats. Cardiology 122:93–100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ay., Yang, Q. & Yang, K. miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes. Mol Cell Biochem 400, 173–181 (2015). https://doi.org/10.1007/s11010-014-2273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2273-2

Keywords

Navigation