Molecular and Cellular Biochemistry

, Volume 399, Issue 1–2, pp 179–188 | Cite as

E2F1 regulates p53R2 gene expression in p53-deficient cells

  • Jun-Juan Qi
  • Ling Liu
  • Ji-Xiang Cao
  • Guo-Shun An
  • Shu-Yan Li
  • Gang Li
  • Hong-Ti Jia
  • Ju-Hua Ni


The p53R2 gene encoding a small subunit of the ribonucleotide reductase has been identified as a p53-inducible gene. Although this gene is discovered as a target for p53 family proteins, the mechanism underlying p53R2 induction by DNA damage in p53-defiencient cells remains to be elucidated. In this study, we demonstrate that transcription factor E2F1 regulates the p53R2 gene expression in p53-deficient cells. We found that p53R2 was a target for E2F1 in DNA damage response (DDR), because ectopic expression of E2F1 in HCT116-p53−/− cells resulted in the increase of p53R2 mRNA and protein expression, and silencing E2F1 diminished its basic expression. Combination of luciferase reporter assay with overexpression or knockdown of E2F1 revealed that E2F1 directly activates the p53R2 gene. Chromatin immunoprecipitation (ChIP) assay showed E2F1 directly bound to the site (TTTGGCGG) at position −684 to −677 of the promoter under E2F1 overexpression or adriamycin (ADR) exposure. Moreover, silencing p53R2 could enhance apoptotic cell death in both HCT116-p53−/− and HCT116-p53+/+ compared to ADR exposure, indicating that p53R2 may protect cancer cell from ADR-induced apoptosis. Together, we have identified a new role of E2F1 in the regulation of p53R2 expression in DDR, and silencing p53R2 may sensitize cancer cells to ADR-induced apoptosis. Our data support the notion that p53R2 is a potential target for cancer therapy. The involvement of E2F1-dependent p53R2 activation in DDR will provide further insight into the induction of p53R2 in p53-deficient cells. These data also give us a deeper understanding of E2F1 role in DDR.


p53R2 E2F1 ADR-induced DNA damage Transcriptional regulation Apoptosis 



We thank Dr. Joseph R. Nevins (Duke University Medical Center, Durham, NC, USA) for pcDNA3-E2F1, and Dr. Wei-Guo Zhu (Peking University Health Science Center, Beijing, China) for HCT116 cells. This work was supported by National Natural Science Foundation of PR China Grants 30671062 and 30971449, and Beijing Natural Science Foundation Grants 5112018 and 7132120.


  1. 1.
    Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K, Takei Y, Nakamura Y (2000) A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404:42–49. doi: 10.1038/35003506 PubMedCrossRefGoogle Scholar
  2. 2.
    Guittet O, Hakansson P, Voevodskaya N, Fridd S, Graslund A, Arakawa H, Nakamura Y, Thelander L (2001) Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. J Biol Chem 276:40647–40651. doi: 10.1074/jbc.M106088200 PubMedCrossRefGoogle Scholar
  3. 3.
    Xue L, Zhou B, Liu X, Qiu W, Jin Z, Yen Y (2003) Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer Res 63:980–986PubMedGoogle Scholar
  4. 4.
    Wang X, Zhenchuk A, Wiman KG, Albertioni F (2009) Regulation of p53R2 and its role as potential target for cancer therapy. Cancer Lett 276:1–7. doi: 10.1016/j.canlet.2008.07.019 PubMedCrossRefGoogle Scholar
  5. 5.
    Hakansson P, Hofer A, Thelander L (2006) Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damageand in resting cells. J Biol Chem 281:7834–7841. doi: 10.1074/jbc.M512894200 PubMedCrossRefGoogle Scholar
  6. 6.
    Liu X, Zhou B, Xue L, Shih J, Tye K, Qi C, Yen Y (2005) The ribonucleotide reductase subunit M2B subcellular localization and functionalimportance for DNA replication in physiological growth of KB cells. Biochem Pharmacol 70:1288–1297. doi: 10.1016/j.bcp.2005.08.005 PubMedCrossRefGoogle Scholar
  7. 7.
    Yanamoto S, Iwamoto T, Kawasaki G, Yoshitomi I, Baba N, Mizuno A (2005) Silencing of the p53R2 gene by RNA interference inhibits growth and enhances 5-fluorouracil sensitivity of oral cancer cells. Cancer Lett 223:67–76. doi: 10.1016/j.canlet.2004.10.019 PubMedCrossRefGoogle Scholar
  8. 8.
    Uramoto H, Sugio K, Oyama T, Hanagiri T, Yasumoto K (2006) P53R2, p53 inducible ribonucleotide reductase gene, correlated with tumor progression of non-small cell lung cancer. Anticancer Res 26:983–988PubMedGoogle Scholar
  9. 9.
    Okumura H, Natsugoe S, Yokomakura N, Kita Y, Matsumoto M, Uchikado Y, Setoyama T, Owaki T, Ishigami S, Aikou T (2006) Expression of p53R2 is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 12:3740–3745. doi: 10.1158/1078-0432.CCR-05-2416 PubMedCrossRefGoogle Scholar
  10. 10.
    Yanamoto S, Kawasaki G, Yamada S, Yoshitomi I, Yoshida H, Mizuno A (2009) Ribonucleotide reductase small subunit p53R2 promotes oral cancer invasion via the E-cadherin/beta-catenin pathway. Oral Oncol 45:521–525. doi: 10.1016/j.oraloncology.2008.07.005 PubMedCrossRefGoogle Scholar
  11. 11.
    Devlin HL, Mack PC, Burich RA, Gumerlock PH, Kung HJ, Mudryj M, DeVere WR (2008) Impairment of the DNA repair and growth arrest pathways by p53R2 silencing enhances DNA damage-induced apoptosis in a p53-dependent manner in prostate cancer cells. Mol Cancer Res 6:808–818. doi: 10.1158/1541-7786.MCR-07-2027 PubMedCrossRefGoogle Scholar
  12. 12.
    Yamaguchi T, Matsuda K, Sagiya Y, Iwadate M, Fujino MA, Nakamura Y, Arakawa H (2001) p53R2-dependent pathway for DNA synthesis in a p53-regulated cell cycle checkpoint. Cancer Res 61:8256–8262PubMedGoogle Scholar
  13. 13.
    Liu X, Zhou B, Xue L, Shih J, Tye K, Lin W, Qi C, Chu P, Un F, Wen W, Yen Y (2006) Metastasis-suppressing potential of ribonucleotide reductase small subunit p53R2in human cancer cells. Clin Cancer Res 12:6337–6344. doi: 10.1158/1078-0432.CCR-06-0799 PubMedCrossRefGoogle Scholar
  14. 14.
    Hsu NY, Wu JY, Liu X, Yen Y, Chen CY, Chou MC, Lin CH, Lee H, Cheng YW (2011) Expression status of ribonucleotide reductase small subunits hRRM2/p53R2 as prognostic biomarkers in stage I and II non-small cell lung cancer. Anticancer Res 31:3475–3481PubMedGoogle Scholar
  15. 15.
    Liu X, Lai L, Wang X, Xue L, Leora S, Wu J, Hu S, Zhang K, Kuo ML, Zhou L, Zhang H, Wang Y, Wang Y, Zhou B, Nelson RA, Zheng S, Zhang S, Chu P, Yen Y (2011) Ribonucleotide reductase small subunit M2B prognoses better survival in colorectal cancer. Cancer Res 71:3202–3213. doi: 10.1158/0008-5472.CAN-11-0054 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Piao C, Jin M, Kim HB, Lee SM, Amatya PN, Hyun JW, Chang IY, You HJ (2009) Ribonucleotide reductase small subunit p53R2 suppresses MEK-ERK activity by binding to ERK kinase 2. Oncogene 28:2173–2184. doi: 10.1038/onc.2009.84 PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang K, Wu J, Wu X, Wang X, Wang Y, Zhou N, Kuo ML, Liu X, Zhou B, Chang L, Ann D, Yen Y (2011) p53R2 inhibits the proliferation of human cancer cells in association with cell-cycle arrest. Mol Cancer Ther 10:269–278. doi: 10.1158/1535-7163.MCT-10-0728 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Yoshida T, Haga S, Numata Y, Yamashita K, Mikami T, Ogawa T, Ohkusa T, Okayasu I (2006) Disruption of the p53-p53r2 DNA repair system in ulcerative colitis contributes to colon tumorigenesis. Int J Cancer 118:1395–1403. doi: 10.1002/ijc.21538 PubMedCrossRefGoogle Scholar
  19. 19.
    Biswas AK, Johnson DG (2012) Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res 72:13–17. doi: 10.1158/0008-5472.CAN-11-2196 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Guo R, Chen J, Zhu F, Biswas AK, Berton TR, Mitchell DL, Johnson DG (2010) E2F1 localizes to sites of UV-induced DNA damage to enhance nucleotide excision repair. J Biol Chem 285:19308–19315. doi: 10.1074/jbc.M110.121939 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Nakano K, Balint E, Ashcroft M, Vousden KH (2000) A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 19:4283–4289PubMedCrossRefGoogle Scholar
  22. 22.
    Vayssade M, Haddada H, Faridoni-Laurens L, Tourpin S, Valent A, Benard J, Ahomadegbe JC (2005) P73 functionally replaces p53 in Adriamycin-treated, p53-deficient breast cancercells. Int J Cancer 116:860–869. doi: 10.1002/ijc.21033 PubMedCrossRefGoogle Scholar
  23. 23.
    McKeon F, Melino G (2007) Fog of war: the emerging p53 family. Cell Cycle 6:229–232PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang HJ, Li WJ, Yang SY, Li SY, Ni JH, Jia HT (2009) 8-Chloro-adenosine-induced E2F1 promotes p14ARF gene activation in H1299 cells through displacing Sp1 from multiple overlapping E2F1/Sp1 sites. J Cell Biochem 106:464–472. doi: 10.1002/jcb.22033 PubMedCrossRefGoogle Scholar
  25. 25.
    Han YY, Zhou Z, Cao JX, Jin YQ, Li SY, Ni JH, An GS, Zhang YX, Jia HT (2013) E2F1-mediated DNA damage is implicated in 8-Cl-adenosine-induced chromosome missegregation and apoptosis in human lung cancer H1299 cells. Mol Cell Biochem 384:187–196. doi: 10.1007/s11010-013-1797-1 PubMedCrossRefGoogle Scholar
  26. 26.
    Jin YQ, An GS, Ni JH, Li SY, Jia HT (2014) ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage. Cell Cycle 13:1627–1638. doi: 10.4161/cc.28605 PubMedCrossRefGoogle Scholar
  27. 27.
    Cao JX, Li SY, An GS, Mao ZB, Jia HT, Ni JH (2014) E2F1-regulated DROSHA promotes miR-630 biosynthesis in cisplatin-exposed cancer cells. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2014.05.138 Google Scholar
  28. 28.
    Stevens C, Smith L, La Thangue NB (2003) Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5:401–409. doi: 10.1038/ncb974 PubMedCrossRefGoogle Scholar
  29. 29.
    Lin WC, Lin FT, Nevins JR (2001) Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependentphosphorylation. Genes Dev 15:1833–1844PubMedCentralPubMedGoogle Scholar
  30. 30.
    Tudzarova-Trajkovska S, Wesierska-Gadek J (2003) Strong induction of p73 protein in vivo coincides with the onset of apoptosis inrat liver after treatment with the hepatocarcinogen N-nitrosomorpholine (NNM). J Cell Biochem 90:837–855. doi: 10.1002/jcb.10678 PubMedCrossRefGoogle Scholar
  31. 31.
    Chang L, Zhou B, Hu S, Guo R, Liu X, Jones SN, Yen Y (2008) ATM-mediated serine 72 phosphorylation stabilizes ribonucleotidereductase smallsubunit p53R2 protein against MDM2 to DNA damage. Proc Natl Acad Sci USA 105:18519–18524. doi: 10.1073/pnas.0803313105 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Taura M, Suico MA, Fukuda R, Koga T, Shuto T, Sato T, Morino-Koga S, Okada S, Kai H (2011) MEF/ELF4 transactivation by E2F1 is inhibited by p53. Nucleic Acids Res 39:76–88. doi: 10.1093/nar/gkq762 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Zhou Z, Cao JX, Li SY, An GS, Ni JH, Jia HT (2013) p53 Suppresses E2F1-dependent PLK1 expression upon DNA damage by forming p53-E2F1-DNA complex. Exp Cell Res 319:3104–3115. doi: 10.1016/j.yexcr.2013.09.012 PubMedCrossRefGoogle Scholar
  34. 34.
    Pontarin G, Ferraro P, Bee L, Reichard P, Bianchi V (2012) Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc Natl Acad Sci USA 109:13302–13307. doi: 10.1073/pnas.1211289109 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B (1996) Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 10:1945–1952PubMedCrossRefGoogle Scholar
  36. 36.
    Gorospe M, Holbrook NJ (1996) Role of p21 in prostaglandin A2-mediated cellular arrest and death. Cancer Res 56:475–479PubMedGoogle Scholar
  37. 37.
    Wang J, Walsh K (1996) Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273:359–361PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Guittet O, Tebbi A, Cottet MH, Vesin F, Lepoivre M (2008) Upregulation of the p53R2 ribonucleotide reductase subunit by nitric oxide. Nitric Oxide 19:84–94. doi: 10.1016/j.niox.2008.04.011 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jun-Juan Qi
    • 1
  • Ling Liu
    • 1
  • Ji-Xiang Cao
    • 1
  • Guo-Shun An
    • 1
  • Shu-Yan Li
    • 1
  • Gang Li
    • 1
  • Hong-Ti Jia
    • 1
  • Ju-Hua Ni
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyPeking University Health Science CenterBeijingPeople’s Republic of China

Personalised recommendations