Skip to main content
Log in

LAP1 is a crucial protein for the maintenance of the nuclear envelope structure and cell cycle progression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cell division in eukaryotes requires the disassembly of the nuclear envelope (NE) at the beginning of mitosis and its reassembly at the end of mitosis. These processes are complex and involve coordinated steps where NE proteins have a crucial role. Lamina-associated polypeptide 1 (LAP1) is an inner nuclear membrane protein that has been associated with cell cycle events. In support of this role, LAP1 has been implicated in the regulation of the NE reassembly and assembly of the mitotic spindle during mitosis. In this study, we demonstrated that LAP1 intracellular levels vary during the cell cycle in SH-SY5Y cells, and that LAP1 is highly phosphorylated during mitosis. It is also clear that LAP1 co-localized with acetylated α-tubulin in the mitotic spindle and with γ-tubulin in centrosomes (main microtubule organizing center) in mitotic cells. Moreover, LAP1 knockdown resulted in decreased number of mitotic cells and decreased levels of acetylated α-tubulin (marker of microtubules stability) and lamin B1. Additionally, it was possible to determine that LAP1 is important for centrosome positioning near the NE. These findings place LAP1 at a key position to participate in the maintenance of the NE structure and progression of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10(3):178–191. doi:10.1038/nrm2641

    Article  PubMed  Google Scholar 

  2. Arnone JT, Walters AD, Cohen-Fix O (2013) The dynamic nature of the nuclear envelope: lessons from closed mitosis. Nucleus 4(4):261–266. doi:10.4161/nucl.25341

    Article  PubMed Central  PubMed  Google Scholar 

  3. Foisner R (2003) Cell cycle dynamics of the nuclear envelope. Sci World J 3:1–20. doi:10.1100/tsw.2003.06

    Article  CAS  Google Scholar 

  4. Moir RD, Yoon M, Khuon S, Goldman RD (2000) Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 151(6):1155–1168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ (2007) A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J Cell Biol 178(6):897–904. doi:10.1083/jcb.200702026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lee KK, Haraguchi T, Lee RS, Koujin T, Hiraoka Y, Wilson KL (2001) Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J Cell Sci 114(Pt 24):4567–4573

    CAS  PubMed  Google Scholar 

  7. Senior A, Gerace L (1988) Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J Cell Biol 107(6 Pt 1):2029–2036

    Article  CAS  PubMed  Google Scholar 

  8. Martin L, Crimaudo C, Gerace L (1995) cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), an integral protein of the inner nuclear membrane. J Biol Chem 270(15):8822–8828

    Article  CAS  PubMed  Google Scholar 

  9. Kondo Y, Kondoh J, Hayashi D, Ban T, Takagi M, Kamei Y, Tsuji L, Kim J, Yoneda Y (2002) Molecular cloning of one isotype of human lamina-associated polypeptide 1s and a topological analysis using its deletion mutants. Biochem Biophys Res Commun 294(4):770–778. doi:10.1016/S0006-291X(02)00563-6

    Article  CAS  PubMed  Google Scholar 

  10. Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73(7):1267–1279

    Article  CAS  PubMed  Google Scholar 

  11. Yang L, Guan T, Gerace L (1997) Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J Cell Biol 137(6):1199–1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105(31):10762–10767. doi:10.1073/pnas.0805139105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3. doi:10.1126/scisignal.2000475

  14. Bollen M, Gerlich DW, Lesage B (2009) Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol 19(10):531–541. doi:10.1016/j.tcb.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  15. Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wunsche A, Satagopam V, Schmitz MH, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289):721–727. doi:10.1038/nature08869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Goodchild RE, Dauer WT (2005) The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol 168(6):855–862. doi:10.1083/jcb.200411026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rebelo S, Vieira SI, da Cruz ESEF, da Cruz ESOA (2008) Monitoring “De Novo” APP synthesis by taking advantage of the reversible effect of cycloheximide. Am J Alzheimers Dis Other Demen 23(6):602–608. doi:10.1177/1533317508323572

    Article  PubMed  Google Scholar 

  18. Rebelo S, Vieira SI, Esselmann H, Wiltfang J, da Cruz e Silva EF, da Cruz e Silva OA (2007) Tyr687 dependent APP endocytosis and Abeta production. J Mol Neurosci 32(1):1–8

    Article  CAS  PubMed  Google Scholar 

  19. Santos M, Domingues CS, Costa P, Muller T, Galozzi S, Marcus K, da Cruz e Silva EF, da Cruz e Silva OAB, Rebelo S (2014) Identification of a novel human LAP1 isoform that is regulated by protein phosphorylation. PLoS One (Submitted)

  20. Santos M, Rebelo S, Van Kleeff PJ, Kim CE, Dauer WT, Fardilha M, da Cruz ESOA, da Cruz ESEF (2013) The nuclear envelope protein, LAP1B, Is a novel protein phosphatase 1 substrate. PLoS One 8(10):e76788. doi:10.1371/journal.pone.0076788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Rebelo S, Domingues SC, Santos M, Fardilha M, Esteves SL, Vieira SI, Vintem AP, Wu W, da Cruz ESEF, da Cruz ESOA (2013) Identification of a novel complex AbetaPP:Fe65:PP1 that regulates AbetaPP Thr668 phosphorylation levels. J Alzheimers Dis 35(4):761–775. doi:10.3233/JAD-130095

    PubMed  Google Scholar 

  22. Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ (2001) Transcriptional regulation and function during the human cell cycle. Nat Genet 27(1):48–54. doi:10.1038/83751

    Article  CAS  PubMed  Google Scholar 

  23. Shedden K, Cooper S (2002) Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc Natl Acad Sci USA 99(7):4379–4384. doi:10.1073/pnas.062569899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. van der Meijden CM, Lapointe DS, Luong MX, Peric-Hupkes D, Cho B, Stein JL, van Wijnen AJ, Stein GS (2002) Gene profiling of cell cycle progression through S-phase reveals sequential expression of genes required for DNA replication and nucleosome assembly. Cancer Res 62(11):3233–3243

    PubMed  Google Scholar 

  25. Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106(6):348–360

    Article  CAS  PubMed  Google Scholar 

  26. Hosokawa T, Saito T, Asada A, Fukunaga K, Hisanaga S (2010) Quantitative measurement of in vivo phosphorylation states of Cdk5 activator p35 by Phos-tag SDS-PAGE. Mol Cell Proteomics 9(6):1133–1143. doi:10.1074/mcp.M900578-MCP200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5(4):749–757. doi:10.1074/mcp.T500024-MCP200

    Article  CAS  PubMed  Google Scholar 

  28. Maison C, Pyrpasopoulou A, Theodoropoulos PA, Georgatos SD (1997) The inner nuclear membrane protein LAP1 forms a native complex with B-type lamins and partitions with spindle-associated mitotic vesicles. EMBO J 16(16):4839–4850. doi:10.1093/emboj/16.16.4839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Gerace L, Foisner R (1994) Integral membrane proteins and dynamic organization of the nuclear envelope. Trends Cell Biol 4(4):127–131. doi:10.1016/0962-8924(94)90067-1

  30. Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y (2000) Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 113(Pt 5):779–794

    CAS  PubMed  Google Scholar 

  31. Kuga T, Nozaki N, Matsushita K, Nomura F, Tomonaga T (2010) Phosphorylation statuses at different residues of lamin B2, B1, and A/C dynamically and independently change throughout the cell cycle. Exp Cell Res 316(14):2301–2312. doi:10.1016/j.yexcr.2010.05.017

    Article  CAS  PubMed  Google Scholar 

  32. Thompson LJ, Bollen M, Fields AP (1997) Identification of protein phosphatase 1 as a mitotic lamin phosphatase. J Biol Chem 272(47):29693–29697

    Article  CAS  PubMed  Google Scholar 

  33. Kwon YG, Lee SY, Choi Y, Greengard P, Nairn AC (1997) Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc Natl Acad Sci USA 94(6):2168–2173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Pyrpasopoulou A, Meier J, Maison C, Simos G, Georgatos SD (1996) The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 15(24):7108–7119

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Takano M, Koyama Y, Ito H, Hoshino S, Onogi H, Hagiwara M, Furukawa K, Horigome T (2004) Regulation of binding of lamin B receptor to chromatin by SR protein kinase and cdc2 kinase in Xenopus egg extracts. J Biol Chem 279(13):13265–13271. doi:10.1074/jbc.M308854200

    Article  CAS  PubMed  Google Scholar 

  36. Buch C, Lindberg R, Figueroa R, Gudise S, Onischenko E, Hallberg E (2009) An integral protein of the inner nuclear membrane localizes to the mitotic spindle in mammalian cells. J Cell Sci 122(Pt 12):2100–2107. doi:10.1242/jcs.047373

    Article  CAS  PubMed  Google Scholar 

  37. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172(1):41–53. doi:10.1083/jcb.200509124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26(10):3738–3751. doi:10.1128/MCB.26.10.3738-3751.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Broers JL, Peeters EA, Kuijpers HJ, Endert J, Bouten CV, Oomens CW, Baaijens FP, Ramaekers FC (2004) Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13(21):2567–2580. doi:10.1093/hmg/ddh295

    Article  CAS  PubMed  Google Scholar 

  40. Kim CE, Perez A, Perkins G, Ellisman MH, Dauer WT (2010) A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc Natl Acad Sci USA 107(21):9861–9866. doi:10.1073/pnas.0912877107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17(5):626–638. doi:10.1016/j.devcel.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  42. Kayman-Kurekci G, Talim B, Korkusuz P, Sayar N, Sarioglu T, Oncel I, Sharafi P, Gundesli H, Balci-Hayta B, Purali N, Serdaroglu-Oflazer P, Topaloglu H, Dincer P (2014) Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscular Disord 24(7):624–633. doi:10.1016/j.nmd.2014.04.007

    Article  Google Scholar 

  43. Shin JY, Mendez-Lopez I, Wang Y, Hays AP, Tanji K, Lefkowitch JH, Schulze PC, Worman HJ, Dauer WT (2013) Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev Cell 26(6):591–603. doi:10.1016/j.devcel.2013.08.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. William Dauer (Columbia University, USA) for providing the LAP1 antibody. The work was financed by the Fundação para a Ciência e Tecnologia of the Portuguese Ministry of Sciences and Tecnhology PTDC/BEX-BCM/0493/2012 (and supported by PTDC/QUI-BIQ/101317/2008, and REEQ/1023/BIO/2005—the Centro de Biologia Celular, Universidade de Aveiro). MS and FM were recipients of FCT fellowships (SFRH/BD/65353/2009 and SFRH/BD/81073/2011, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Rebelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M., Costa, P., Martins, F. et al. LAP1 is a crucial protein for the maintenance of the nuclear envelope structure and cell cycle progression. Mol Cell Biochem 399, 143–153 (2015). https://doi.org/10.1007/s11010-014-2241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2241-x

Keywords

Navigation