Molecular and Cellular Biochemistry

, Volume 399, Issue 1–2, pp 143–153 | Cite as

LAP1 is a crucial protein for the maintenance of the nuclear envelope structure and cell cycle progression

  • Mariana Santos
  • Patrícia Costa
  • Filipa Martins
  • Edgar F. da Cruz e Silva
  • Odete A. B. da Cruz e Silva
  • Sandra Rebelo


Cell division in eukaryotes requires the disassembly of the nuclear envelope (NE) at the beginning of mitosis and its reassembly at the end of mitosis. These processes are complex and involve coordinated steps where NE proteins have a crucial role. Lamina-associated polypeptide 1 (LAP1) is an inner nuclear membrane protein that has been associated with cell cycle events. In support of this role, LAP1 has been implicated in the regulation of the NE reassembly and assembly of the mitotic spindle during mitosis. In this study, we demonstrated that LAP1 intracellular levels vary during the cell cycle in SH-SY5Y cells, and that LAP1 is highly phosphorylated during mitosis. It is also clear that LAP1 co-localized with acetylated α-tubulin in the mitotic spindle and with γ-tubulin in centrosomes (main microtubule organizing center) in mitotic cells. Moreover, LAP1 knockdown resulted in decreased number of mitotic cells and decreased levels of acetylated α-tubulin (marker of microtubules stability) and lamin B1. Additionally, it was possible to determine that LAP1 is important for centrosome positioning near the NE. These findings place LAP1 at a key position to participate in the maintenance of the NE structure and progression of the cell cycle.


Lamina-associated polypeptide 1 Nuclear envelope Cell cycle Protein phosphorylation Centrosome 



The authors thank Dr. William Dauer (Columbia University, USA) for providing the LAP1 antibody. The work was financed by the Fundação para a Ciência e Tecnologia of the Portuguese Ministry of Sciences and Tecnhology PTDC/BEX-BCM/0493/2012 (and supported by PTDC/QUI-BIQ/101317/2008, and REEQ/1023/BIO/2005—the Centro de Biologia Celular, Universidade de Aveiro). MS and FM were recipients of FCT fellowships (SFRH/BD/65353/2009 and SFRH/BD/81073/2011, respectively).


  1. 1.
    Guttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10(3):178–191. doi: 10.1038/nrm2641 PubMedCrossRefGoogle Scholar
  2. 2.
    Arnone JT, Walters AD, Cohen-Fix O (2013) The dynamic nature of the nuclear envelope: lessons from closed mitosis. Nucleus 4(4):261–266. doi: 10.4161/nucl.25341 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Foisner R (2003) Cell cycle dynamics of the nuclear envelope. Sci World J 3:1–20. doi: 10.1100/tsw.2003.06 CrossRefGoogle Scholar
  4. 4.
    Moir RD, Yoon M, Khuon S, Goldman RD (2000) Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 151(6):1155–1168PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Salpingidou G, Smertenko A, Hausmanowa-Petrucewicz I, Hussey PJ, Hutchison CJ (2007) A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J Cell Biol 178(6):897–904. doi: 10.1083/jcb.200702026 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lee KK, Haraguchi T, Lee RS, Koujin T, Hiraoka Y, Wilson KL (2001) Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J Cell Sci 114(Pt 24):4567–4573PubMedGoogle Scholar
  7. 7.
    Senior A, Gerace L (1988) Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J Cell Biol 107(6 Pt 1):2029–2036PubMedCrossRefGoogle Scholar
  8. 8.
    Martin L, Crimaudo C, Gerace L (1995) cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), an integral protein of the inner nuclear membrane. J Biol Chem 270(15):8822–8828PubMedCrossRefGoogle Scholar
  9. 9.
    Kondo Y, Kondoh J, Hayashi D, Ban T, Takagi M, Kamei Y, Tsuji L, Kim J, Yoneda Y (2002) Molecular cloning of one isotype of human lamina-associated polypeptide 1s and a topological analysis using its deletion mutants. Biochem Biophys Res Commun 294(4):770–778. doi: 10.1016/S0006-291X(02)00563-6 PubMedCrossRefGoogle Scholar
  10. 10.
    Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73(7):1267–1279PubMedCrossRefGoogle Scholar
  11. 11.
    Yang L, Guan T, Gerace L (1997) Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J Cell Biol 137(6):1199–1210PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105(31):10762–10767. doi: 10.1073/pnas.0805139105 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3. doi: 10.1126/scisignal.2000475
  14. 14.
    Bollen M, Gerlich DW, Lesage B (2009) Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol 19(10):531–541. doi: 10.1016/j.tcb.2009.06.005 PubMedCrossRefGoogle Scholar
  15. 15.
    Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wunsche A, Satagopam V, Schmitz MH, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464(7289):721–727. doi: 10.1038/nature08869 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Goodchild RE, Dauer WT (2005) The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol 168(6):855–862. doi: 10.1083/jcb.200411026 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Rebelo S, Vieira SI, da Cruz ESEF, da Cruz ESOA (2008) Monitoring “De Novo” APP synthesis by taking advantage of the reversible effect of cycloheximide. Am J Alzheimers Dis Other Demen 23(6):602–608. doi: 10.1177/1533317508323572 PubMedCrossRefGoogle Scholar
  18. 18.
    Rebelo S, Vieira SI, Esselmann H, Wiltfang J, da Cruz e Silva EF, da Cruz e Silva OA (2007) Tyr687 dependent APP endocytosis and Abeta production. J Mol Neurosci 32(1):1–8PubMedCrossRefGoogle Scholar
  19. 19.
    Santos M, Domingues CS, Costa P, Muller T, Galozzi S, Marcus K, da Cruz e Silva EF, da Cruz e Silva OAB, Rebelo S (2014) Identification of a novel human LAP1 isoform that is regulated by protein phosphorylation. PLoS One (Submitted)Google Scholar
  20. 20.
    Santos M, Rebelo S, Van Kleeff PJ, Kim CE, Dauer WT, Fardilha M, da Cruz ESOA, da Cruz ESEF (2013) The nuclear envelope protein, LAP1B, Is a novel protein phosphatase 1 substrate. PLoS One 8(10):e76788. doi: 10.1371/journal.pone.0076788 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Rebelo S, Domingues SC, Santos M, Fardilha M, Esteves SL, Vieira SI, Vintem AP, Wu W, da Cruz ESEF, da Cruz ESOA (2013) Identification of a novel complex AbetaPP:Fe65:PP1 that regulates AbetaPP Thr668 phosphorylation levels. J Alzheimers Dis 35(4):761–775. doi: 10.3233/JAD-130095 PubMedGoogle Scholar
  22. 22.
    Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ (2001) Transcriptional regulation and function during the human cell cycle. Nat Genet 27(1):48–54. doi: 10.1038/83751 PubMedCrossRefGoogle Scholar
  23. 23.
    Shedden K, Cooper S (2002) Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc Natl Acad Sci USA 99(7):4379–4384. doi: 10.1073/pnas.062569899 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    van der Meijden CM, Lapointe DS, Luong MX, Peric-Hupkes D, Cho B, Stein JL, van Wijnen AJ, Stein GS (2002) Gene profiling of cell cycle progression through S-phase reveals sequential expression of genes required for DNA replication and nucleosome assembly. Cancer Res 62(11):3233–3243PubMedGoogle Scholar
  25. 25.
    Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR, Bazett-Jones DP, Allis CD (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106(6):348–360PubMedCrossRefGoogle Scholar
  26. 26.
    Hosokawa T, Saito T, Asada A, Fukunaga K, Hisanaga S (2010) Quantitative measurement of in vivo phosphorylation states of Cdk5 activator p35 by Phos-tag SDS-PAGE. Mol Cell Proteomics 9(6):1133–1143. doi: 10.1074/mcp.M900578-MCP200 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5(4):749–757. doi: 10.1074/mcp.T500024-MCP200 PubMedCrossRefGoogle Scholar
  28. 28.
    Maison C, Pyrpasopoulou A, Theodoropoulos PA, Georgatos SD (1997) The inner nuclear membrane protein LAP1 forms a native complex with B-type lamins and partitions with spindle-associated mitotic vesicles. EMBO J 16(16):4839–4850. doi: 10.1093/emboj/16.16.4839 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Gerace L, Foisner R (1994) Integral membrane proteins and dynamic organization of the nuclear envelope. Trends Cell Biol 4(4):127–131. doi: 10.1016/0962-8924(94)90067-1
  30. 30.
    Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y (2000) Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 113(Pt 5):779–794PubMedGoogle Scholar
  31. 31.
    Kuga T, Nozaki N, Matsushita K, Nomura F, Tomonaga T (2010) Phosphorylation statuses at different residues of lamin B2, B1, and A/C dynamically and independently change throughout the cell cycle. Exp Cell Res 316(14):2301–2312. doi: 10.1016/j.yexcr.2010.05.017 PubMedCrossRefGoogle Scholar
  32. 32.
    Thompson LJ, Bollen M, Fields AP (1997) Identification of protein phosphatase 1 as a mitotic lamin phosphatase. J Biol Chem 272(47):29693–29697PubMedCrossRefGoogle Scholar
  33. 33.
    Kwon YG, Lee SY, Choi Y, Greengard P, Nairn AC (1997) Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc Natl Acad Sci USA 94(6):2168–2173PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Pyrpasopoulou A, Meier J, Maison C, Simos G, Georgatos SD (1996) The lamin B receptor (LBR) provides essential chromatin docking sites at the nuclear envelope. EMBO J 15(24):7108–7119PubMedCentralPubMedGoogle Scholar
  35. 35.
    Takano M, Koyama Y, Ito H, Hoshino S, Onogi H, Hagiwara M, Furukawa K, Horigome T (2004) Regulation of binding of lamin B receptor to chromatin by SR protein kinase and cdc2 kinase in Xenopus egg extracts. J Biol Chem 279(13):13265–13271. doi: 10.1074/jbc.M308854200 PubMedCrossRefGoogle Scholar
  36. 36.
    Buch C, Lindberg R, Figueroa R, Gudise S, Onischenko E, Hallberg E (2009) An integral protein of the inner nuclear membrane localizes to the mitotic spindle in mammalian cells. J Cell Sci 122(Pt 12):2100–2107. doi: 10.1242/jcs.047373 PubMedCrossRefGoogle Scholar
  37. 37.
    Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172(1):41–53. doi: 10.1083/jcb.200509124 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26(10):3738–3751. doi: 10.1128/MCB.26.10.3738-3751.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Broers JL, Peeters EA, Kuijpers HJ, Endert J, Bouten CV, Oomens CW, Baaijens FP, Ramaekers FC (2004) Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13(21):2567–2580. doi: 10.1093/hmg/ddh295 PubMedCrossRefGoogle Scholar
  40. 40.
    Kim CE, Perez A, Perkins G, Ellisman MH, Dauer WT (2010) A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc Natl Acad Sci USA 107(21):9861–9866. doi: 10.1073/pnas.0912877107 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17(5):626–638. doi: 10.1016/j.devcel.2009.10.016 PubMedCrossRefGoogle Scholar
  42. 42.
    Kayman-Kurekci G, Talim B, Korkusuz P, Sayar N, Sarioglu T, Oncel I, Sharafi P, Gundesli H, Balci-Hayta B, Purali N, Serdaroglu-Oflazer P, Topaloglu H, Dincer P (2014) Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscular Disord 24(7):624–633. doi: 10.1016/j.nmd.2014.04.007 CrossRefGoogle Scholar
  43. 43.
    Shin JY, Mendez-Lopez I, Wang Y, Hays AP, Tanji K, Lefkowitch JH, Schulze PC, Worman HJ, Dauer WT (2013) Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev Cell 26(6):591–603. doi: 10.1016/j.devcel.2013.08.012 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mariana Santos
    • 1
  • Patrícia Costa
    • 1
  • Filipa Martins
    • 1
  • Edgar F. da Cruz e Silva
    • 1
  • Odete A. B. da Cruz e Silva
    • 1
  • Sandra Rebelo
    • 1
  1. 1.Neuroscience Laboratory, Health Sciences Department, Centre for Cell BiologyUniversity of AveiroAveiroPortugal

Personalised recommendations