Advertisement

Molecular and Cellular Biochemistry

, Volume 399, Issue 1–2, pp 95–103 | Cite as

Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects

  • Mrittika Chattopadhyay
  • Vineet Kumar Khemka
  • Gargi Chatterjee
  • Anirban Ganguly
  • Satinath Mukhopadhyay
  • Sasanka Chakrabarti
Article

Abstract

Oxidative stress in the insulin target tissues has been implicated in the pathophysiology of type 2 diabetes. The study has examined the oxidative stress parameters in the mitochondria of subcutaneous white adipose tissue from obese and non-obese subjects with or without type 2 diabetes. An accumulation of protein carbonyls, fluorescent lipid peroxidation products, and malondialdehyde occurs in the adipose tissue mitochondria of obese type 2 diabetic, non-diabetic obese, and non-obese diabetic subjects with the maximum increase noticed in the obese type 2 diabetes patients and the minimum in non-obese type 2 diabetics. The mitochondria from obese type 2 diabetics, non-diabetic obese, and non-obese type 2 diabetics also produce significantly more reactive oxygen species (ROS) in vitro compared to those of controls, and apparently the mitochondrial ROS production rate in each group is proportional to the respective load of oxidative damage markers. Likewise, the mitochondrial antioxidant enzymes like superoxide dismutase and glutathione peroxidase show decreased activities most markedly in obese type 2 diabetes subjects and to a lesser degree in non-obese type 2 diabetes or non-diabetic obese subjects in comparison to control. The results imply that mitochondrial dysfunction with enhanced ROS production may contribute to the metabolic abnormality of adipose tissue in obesity and diabetes.

Keywords

Diabetes Obesity Oxidative stress Adipose tissue Mitochondrial dysfunction 

Notes

Acknowledgments

The study was supported by a Grant from Council of Scientific and Industrial Research (CSIR), Government of India. (No. 27(0202)/09/EMR-II, 2009-2012). We are thankful to Dr. Manoj Khanna, Cosmetic Surgeon for his generous help in providing the adipose tissue obtained by liposuction and Ms. Indrani Roy for technical help in tissue processing. We thank the West Bengal University of Health Sciences for their help and encouragement.

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17:171–180PubMedCrossRefGoogle Scholar
  2. 2.
    Vincent HK, Taylor AG (2006) Biomarkers and potential mechanisms of obesity induced oxidant stress in humans. Int J Obes (Lond) 30:400–418CrossRefGoogle Scholar
  3. 3.
    Niemann B, Chen Y, Teschner M, Li L, Silber RE, Rohrbach S (2011) Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J Am Coll Cardiol 57:577–585PubMedCrossRefGoogle Scholar
  4. 4.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010:453892PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, Scherer PE (2005) The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem 280:4617–4626PubMedCrossRefGoogle Scholar
  7. 7.
    Robertson RP, Harmon J, Tran PO, Poitout V (2004) Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53(Suppl 1):S119–S124PubMedCrossRefGoogle Scholar
  8. 8.
    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gurzov EN, Tran M, Fernandez-Rojo MA, Merry TL, Zhang X, Xu Y, Fukushima A, Waters MJ, Watt MJ, Andrikopoulos S, Neel BG, Tiganis T (2014) Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab 20:85–102PubMedCrossRefGoogle Scholar
  10. 10.
    Paneni F, Beckman JA, Creager MA, Cosentino F (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34:2436–2443PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625PubMedCrossRefGoogle Scholar
  12. 12.
    Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Chakrabarti S, Sinha M, Thakurta IG, Banerjee P, Chattopadhyay M (2013) Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: intervention in a complex relationship by antioxidants. Curr Med Chem 20:4648–4664PubMedCrossRefGoogle Scholar
  14. 14.
    Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12:537–577PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (2009) Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787:384–392PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng Z, Almeida FA (2014) Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle 13:890–897PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Sivitz WI (2010) Mitochondrial dysfunction in obesity and diabetes. US Endocrinol 6:20–27Google Scholar
  21. 21.
    Chattopadhyay M, Thakurta IG, Behera P, Ranjan KR, Khanna M, Mukhopadhyay S, Chakrabarti S (2011) Mitochondrial bioenergetics is not impaired in non-obese subjects with type 2 diabetes mellitus. Metabolism 60:1702–1710PubMedCrossRefGoogle Scholar
  22. 22.
    Mohan V, Farooq S, Deepa M, Ravikumar R, Pitchumoni CS (2009) Prevalence of non-alcoholic fatty liver disease in urban south Indians in relation to different grades of glucose intolerance and metabolic syndrome. Diabetes Res Clin Pract 84:84–91PubMedCrossRefGoogle Scholar
  23. 23.
    Kumar S, Mukherjee S, Mukhopadhyay P, Pandit K, Raychaudhuri M, Sengupta N, Ghosh S, Sarkar S, Mukherjee S, Chowdhury S (2008) Prevalance of diabetes and impaired fasting glucose in a selected population with special reference to influence of family history and anthropometric measurements—the Kolkata policeman study. J Assoc Physicians India 56:841–844PubMedGoogle Scholar
  24. 24.
    Chakrabarti S, Munshi S, Banerjee K, Thakurta IG, Sinha M, Bagh MB (2011) Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2:242–256PubMedCentralPubMedGoogle Scholar
  25. 25.
    Piantadosi CA, Suliman HB (2006) Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 281:324–333PubMedCrossRefGoogle Scholar
  26. 26.
    WHO/IOTF/IASO (2000) The Asia-Pacific perspective: redefining obesity and its treatment. World Health Organization, International Obesity Task Force, International Association for the Study of Obesity, Hong KongGoogle Scholar
  27. 27.
    Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxy phenoxazine derivative. J Immunol Methods 202:133–141PubMedCrossRefGoogle Scholar
  28. 28.
    Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357PubMedCrossRefGoogle Scholar
  29. 29.
    Shimasaki H (1994) Assay of fluorescent lipid peroxidation products. Methods Enzymol 233:338–340PubMedCrossRefGoogle Scholar
  30. 30.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358PubMedCrossRefGoogle Scholar
  31. 31.
    Sun M, Zigman S (1978) An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 90:81–89PubMedCrossRefGoogle Scholar
  32. 32.
    Bagh MB, Thakurta IG, Biswas M, Behera P, Chakrabarti S (2011) Age-related oxidative decline of mitochondrial functions in rat brain is prevented by long term oral antioxidant supplementation. Biogerontology 12:119–131PubMedCrossRefGoogle Scholar
  33. 33.
    Wendel A (1980) Glutathione peroxidase. In: Jacoby WD (ed) Enzymatic basis of detoxification, 3rd edn. Academic Press, New York, pp 333–353CrossRefGoogle Scholar
  34. 34.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  35. 35.
    Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92PubMedCrossRefGoogle Scholar
  36. 36.
    Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ma ZA, Zhao Z, Turk J (2012) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012:703538PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Jheng HF, Tsai PJ, Guo SM, Kuo LH, Chang CS, Su IJ, Chang CR, Tsai YS (2012) Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32:309–319PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, Hojlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599PubMedCrossRefGoogle Scholar
  40. 40.
    Lefort N, Glancy B, Bowen B, Willis WT, Bailowitz Z, De Filippis EA, Brophy C, Meyer C, Højlund K, Yi Z, Mandarino LJ (2010) Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59:2444–2452PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466PubMedCrossRefGoogle Scholar
  42. 42.
    Hayden MS, Ghosh S (2004) Signaling to NF-kB. Genes Dev 18:2195–2224PubMedCrossRefGoogle Scholar
  43. 43.
    Morgan MJ, Z-g Liu (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Siddle K (2011) Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 47:R1–10PubMedCrossRefGoogle Scholar
  46. 46.
    Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15:1082–1087PubMedCrossRefGoogle Scholar
  47. 47.
    Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K (2012) Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2:799PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Chevillotte E, Giralt M, Miroux B, Ricquier D, Villarroya F (2007) Uncoupling protein-2 controls adiponectin gene expression in adipose tissue through the modulation of reactive oxygen species production. Diabetes 56:1042–1050PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mrittika Chattopadhyay
    • 1
  • Vineet Kumar Khemka
    • 1
  • Gargi Chatterjee
    • 1
  • Anirban Ganguly
    • 1
  • Satinath Mukhopadhyay
    • 2
  • Sasanka Chakrabarti
    • 1
  1. 1.Department of BiochemistryInstitute of Post Graduate Medical Education & ResearchKolkataIndia
  2. 2.Department of Endocrinology and MetabolismInstitute of Post Graduate Medical Education & ResearchKolkataIndia

Personalised recommendations