Skip to main content
Log in

Nicotine-induced upregulation of VCAM-1, MMP-2, and MMP-9 through the α7-nAChR-JNK pathway in RAW264.7 and MOVAS cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The ability of nicotine to induce aortic aneurysms has been shown in animal models; however, its underlying mechanisms remain elusive. In the present experiment, both the RAW264.7 and MOVAS cell lines were employed to examine the nicotine-induced modulation of VCAM-1, MMP-2, and MMP-9 expressions in macrophages and vascular smooth muscle cells. Our results showed that nicotine concentrations of both 0.5 and 5 ng/ml induced VCAM-1, MMP-2, and MMP-9 upregulation, while a concentration of 50 ng/ml had a slight inhibitory effect and a concentration of 500 ng/ml showed a significant inhibitory effect. When cells were pretreated with either SP600125 (JNK inhibitor) or PNU-282987 (α7-nAChR agonist) prior to nicotine exposure, the nicotine-induced upregulation of VCAM-1, MMP-2, MMP-9, and p-JNK was suppressed, with a joint treatment producing a more significant inhibitory effect. Moreover, PNU-282987 had a comparable inhibitory effect on VCAM-1, MMP-2, and MMP-9 expressions and JNK activation via phosphorylation as did SP600125. In conclusion, nicotine-induced VCAM-1, MMP-2, and MMP-9 expressions occur in a dose-dependent fashion in both of the cell lines tested. Furthermore, the nicotine exposure equivalent to plasma levels found in regular smokers can augment VCAM-1, MMP-2, and MMP-9 expressions through the α7-nAChR-JNK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang S, Zhang C, Zhang M, Liang B, Zhu H, Lee J, Viollet B, Xia L, Zhang Y, Zou MH (2012) Activation of AMP-activated protein kinase alpha2 by nicotine instigates formation of abdominal aortic aneurysms in mice in vivo. Nat Med 18:902–910. doi:10.1038/nm.2711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, Leeper NJ, Raaz U, Schoelmerich AM, McConnell MV, Dalman RL, Spin JM, Tsao PS (2012) MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med 4:122ra22. doi:10.1126/scitranslmed.3003441

    Article  PubMed  Google Scholar 

  3. Li ZZ, Dai QY (2012) Pathogenesis of abdominal aortic aneurysms: role of nicotine and nicotinic acetylcholine receptors. Mediators Inflamm 2012:103120. doi:10.1155/2012/103120

    PubMed Central  PubMed  Google Scholar 

  4. Jacob-Ferreira AL, Palei AC, Cau SB, Moreno H Jr, Martinez ML, Izidoro-Toledo TC, Gerlach RF, Tanus-Santos JE (2010) Evidence for the involvement of matrix metalloproteinases in the cardiovascular effects produced by nicotine. Eur J Pharmacol 627:216–222. doi:10.1016/j.ejphar.2009.10.057

    Article  CAS  PubMed  Google Scholar 

  5. Nordskog BK, Blixt AD, Morgan WT, Fields WR, Hellmann GM (2003) Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate. Cardiovasc Toxicol 3:101–117

    Article  PubMed  Google Scholar 

  6. Shin VY, Wu WK, Chu KM, Wong HP, Lam EK, Tai EK, Koo MW, Cho CH (2005) Nicotine induces cyclooxygenase-2 and vascular endothelial growth factor receptor-2 in association with tumor-associated invasion and angiogenesis in gastric cancer. Mol Cancer Res 3:607–615. doi:10.1158/1541-7786.MCR-05-0106

    Article  CAS  PubMed  Google Scholar 

  7. Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A, Eckstein HH (2009) Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 76:243–252. doi:10.1159/000228900

    Article  CAS  PubMed  Google Scholar 

  8. Murphy EA, Danna-Lopes D, Sarfati I, Rao SK, Cohen JR (1998) Nicotine-stimulated elastase activity release by neutrophils in patients with abdominal aortic aneurysms. Ann Vasc Surg 12:41–45

    Article  CAS  PubMed  Google Scholar 

  9. Carty CS, Soloway PD, Kayastha S, Bauer J, Marsan B, Ricotta JJ, Dryjski M (1996) Nicotine and cotinine stimulate secretion of basic fibroblast growth factor and affect expression of matrix metalloproteinases in cultured human smooth muscle cells. J Vasc Surg 24:927–934 discussion 934-5

    Article  CAS  PubMed  Google Scholar 

  10. Dom AM, Buckley AW, Brown KC, Egleton RD, Marcelo AJ, Proper NA, Weller DE, Shah YH, Lau JK, Dasgupta P (2011) The alpha7-nicotinic acetylcholine receptor and MMP-2/-9 pathway mediate the proangiogenic effect of nicotine in human retinal endothelial cells. Invest Ophthalmol Vis Sci 52:4428–4438. doi:10.1167/iovs.10-5461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lau PP, Li L, Merched AJ, Zhang AL, Ko KW, Chan L (2006) Nicotine induces proinflammatory responses in macrophages and the aorta leading to acceleration of atherosclerosis in low-density lipoprotein receptor(-/-) mice. Arterioscler Thromb Vasc Biol 26:143–149. doi:10.1161/01.ATV.0000193510.19000.10

    Article  CAS  PubMed  Google Scholar 

  12. Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A, Hoshii Y, Tanaka N, Ricci R, Ishihara T, Esato K, Hamano K, Matsuzaki M (2005) Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 11:1330–1338. doi:10.1038/nm1335

    Article  CAS  PubMed  Google Scholar 

  13. Dimusto PD, Lu G, Ghosh A, Roelofs KJ, Sadiq O, McEvoy B, Su G, Laser A, Bhamidipati CM, Ailawadi G, Henke PK, Eliason JL, Upchurch GR Jr (2011) Increased JNK in males compared with females in a rodent model of abdominal aortic aneurysm. J Surg Res. doi:10.1016/j.jss.2011.11.1024

    PubMed Central  PubMed  Google Scholar 

  14. Watanabe A, Ichiki T, Sankoda C, Takahara Y, Ikeda J, Inoue E, Tokunou T, Kitamoto S, Sunagawa K (2014) Suppression of abdominal aortic aneurysm formation by inhibition of prolyl hydroxylase domain protein through attenuation of inflammation and extracellular matrix disruption. Clin Sci (Lond) 126:671–678. doi:10.1042/CS20130435

    Article  CAS  Google Scholar 

  15. Airhart N, Brownstein BH, Cobb JP, Schierding W, Arif B, Ennis TL, Thompson RW, Curci JA (2013) Smooth muscle cells from abdominal aortic aneurysms are unique and can independently and synergistically degrade insoluble elastin. J Vasc Surg. doi:10.1016/j.jvs.2013.07.097

    PubMed  Google Scholar 

  16. Isaac PF, Rand MJ (1972) Cigarette smoking and plasma levels of nicotine. Nature 236:308–310

    Article  CAS  PubMed  Google Scholar 

  17. Russell MAH, Wilson C, Patel UA, Feyerabend C, Cole PV (1975) Plasma nicotine levels after smoking cigarettes with high, medium, and low nicotine yields. Br Med J 2:414–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Villablanca AC (1998) Nicotine stimulates DNA synthesis and proliferation in vascular endothelial cells in vitro. J Appl Physiol 84:2089–2098

    CAS  PubMed  Google Scholar 

  19. Zhang L, Liao MF, Tian L, Zou SL, Lu QS, Bao JM, Pei YF, Jing ZP (2011) Overexpression of interleukin-1beta and interferon-gamma in type I thoracic aortic dissections and ascending thoracic aortic aneurysms: possible correlation with matrix metalloproteinase-9 expression and apoptosis of aortic media cells. Eur J Cardiothorac Surg 40:17–22. doi:10.1016/j.ejcts.2010.09.019

    Article  PubMed  Google Scholar 

  20. Leite PE, Gandia L, de Pascual R, Nanclares C, Colmena I, Santos WC, Lagrota-Candido J, Quirico-Santos T (2014) Selective activation of alpha7 nicotinic acetylcholine receptor (nAChRalpha7) inhibits muscular degeneration in mdx dystrophic mice. Brain Res 1573:27–36. doi:10.1016/j.brainres.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  21. Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Kamochi H, Suzuki N (2006) Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol 146:116–123. doi:10.1111/j.1365-2249.2006.03169.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang X, Yang Z, Xue B, Shi H (2011) Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance. Endocrinology 152:836–846. doi:10.1210/en.2010-0855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Eagleton MJ (2012) Inflammation in abdominal aortic aneurysms: cellular infiltrate and cytokine profiles. Vascular 20:278–283. doi:10.1258/vasc.2011.201207

    Article  PubMed  Google Scholar 

  24. Michel JB, Martin-Ventura JL, Egido J, Sakalihasan N, Treska V, Lindholt J, Allaire E, Thorsteinsdottir U, Cockerill G, Swedenborg J (2011) Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res 90:18–27. doi:10.1093/cvr/cvq337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Natural Science Foundation of China (NSFC; no. 81370415), the Shanghai Science Committee, Shanghai, China (no. 09JC1412300) and Guizhou Provincial Science and Technology Fund Committee, Guiyang, China. (no. 2014GZ21763)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Yan Dai.

Additional information

Zong-Zhuang Li and Zhen-Zhen Guo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZZ., Guo, ZZ., Zhang, Z. et al. Nicotine-induced upregulation of VCAM-1, MMP-2, and MMP-9 through the α7-nAChR-JNK pathway in RAW264.7 and MOVAS cells. Mol Cell Biochem 399, 49–58 (2015). https://doi.org/10.1007/s11010-014-2231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2231-z

Keywords

Navigation