Advertisement

Molecular and Cellular Biochemistry

, Volume 399, Issue 1–2, pp 39–47 | Cite as

Molecular adaptations in vasoactive systems during acute stroke in salt-induced hypertension

  • Nicole M. Ventura
  • Nichole T. Peterson
  • M. Yat Tse
  • R. David Andrew
  • Stephen C. Pang
  • Albert Y. Jin
Article

Abstract

Investigations regarding hypertension and dietary sodium, both factors that influence stroke risk, have previously been limited to using genetically disparate treatment and control groups, namely the stroke-prone, spontaneously hypertensive rat and Wistar-Kyoto rat. In this investigation, we have characterized and compared cerebral vasoactive system adaptations following stroke in genetically identical, salt-induced hypertensive, and normotensive control mice. Briefly, ANP+/− (C57BJ/6 × SV129 background) mice were fed chow containing either 0.8 % NaCl (NS) or 8.0 % NaCl (HS) for 7 weeks. Transient cerebral ischemia was induced by middle cerebral artery occlusion (MCAO). Infarct volumes were measured 24-h post-reperfusion and the mRNA expression of five major vasoactive systems was characterized using qPCR. Along with previous publications, our data validate a salt-induced hypertensive state in ANP+/− mice fed HS chow as they displayed left ventricular hypertrophy, increased systolic blood pressure, and increased urinary sodium excretion. Following MCAO, mice fed HS exhibited larger infarct volumes than their dietary counterparts. In addition, significant up-regulation in Et-1 and Nos3 mRNA expression in response to salt and stroke suggests implications with increased cerebral damage in this group. In conclusion, our data demonstrate increased cerebral susceptibility to stroke in salt-induced hypertensive mice. More importantly, however, we have characterized a novel method of investigating hypertension and stroke with the use of genetically identical treatment and control groups. This is the first investigation in which genetic confounding variables have been eliminated.

Keywords

Stroke Hypertension Salt-sensitivity Dietary sodium Natriuretic peptide 

Notes

Acknowledgments

The authors would like to thank Dr. Alastair Ferguson, Department of Biomedical and Molecular Sciences, Queen’s University, for the use of the CODA non-invasive tail-cuff BP system. NMV is a recipient of the Franklin Bracken Student Fellowship. Research equipment funding (real-time PCR) was provided by the Canadian Foundation of Innovation (CFI).

Conflict of interest

None.

Supplementary material

11010_2014_2230_MOESM1_ESM.pdf (28 kb)
Supplementary material 1 (PDF 28 kb)
11010_2014_2230_MOESM2_ESM.pdf (38 kb)
Supplementary material 2 (PDF 37 kb)

References

  1. 1.
    World Health Organization (2013) GlobalHealthRisks_report_full, pp 1–70Google Scholar
  2. 2.
    Lawes CM, Bennett DA, Lewington S, Rodgers A (2002) Blood pressure and coronary heart disease: a review of the evidence. Semin Vasc Med 02:355–368. doi: 10.1055/s-2002-36765 CrossRefGoogle Scholar
  3. 3.
    Lawes CM, Bennett DA, Feigin VL, Rodgers A (2004) Blood pressure and stroke: an overview of published reviews. Stroke 35:1024. doi: 10.1161/01.STR.0000126208.14181.DD
  4. 4.
    Dahl LK (1961) Possible role of chronic excess salt consumption in the pathogenesis of essential hypertension. Am J Cardiol 8:571–575. doi: 10.1016/0002-9149(61)90137-0 PubMedCrossRefGoogle Scholar
  5. 5.
    Stamler J, Rose G, Elliott P, et al (1989) The INTERSALT study. HypertensionGoogle Scholar
  6. 6.
    Strazzullo P, D’Elia L, Kandala N-B, Cappuccio FP (2009) Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ 339:b4567–b4567. doi: 10.1136/bmj.b4567 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Yu HCM, Burrell LM, Black MJ et al (1998) Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation 98:2621–2628. doi: 10.1161/01.CIR.98.23.2621 PubMedCrossRefGoogle Scholar
  8. 8.
    Elliott P, Stamler J, Nichols R et al (1996) Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group. BMJ 312:1249–1253PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Nagata C, Takatsuka N, Shimizu N, Shimizu H (2004) Sodium intake and risk of death from stroke in Japanese men and women. Stroke 35:1543–1547. doi: 10.1161/01.STR.0000130425.50441.b0 PubMedCrossRefGoogle Scholar
  10. 10.
    Gardener H, Rundek T, Wright CB et al (2012) Dietary sodium and risk of stroke in the Northern Manhattan study. Stroke 43:1200–1205PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kannel WB, Dawber TR, Sorlie P, Wolf PA (1976) Components of blood pressure and risk of atherothrombotic brain infarction: the Framingham study. Stroke 7:327–331PubMedCrossRefGoogle Scholar
  12. 12.
    Kannel WB, Wolf PA, Verter J, McNamara PM (1996) Epidemiologic assessment of the role of blood pressure in stroke the Framingham study. JAMA 276:1269. doi: 10.1001/jama.1996.03540150071040 PubMedCrossRefGoogle Scholar
  13. 13.
    Fujii K, Weno BL, Baumbach GL, Heistad DD (1992) Effect of antihypertensive treatment on focal cerebral infarction. Hypertension 19:713–716PubMedCrossRefGoogle Scholar
  14. 14.
    John SW, Krege JH, Oliver PM et al (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681PubMedCrossRefGoogle Scholar
  15. 15.
    Sangaralingham SJ, Tse MY, Pang SC (2007) Estrogen protects against the development of salt-induced cardiac hypertrophy in heterozygous proANP gene-disrupted mice. J Endocrinol 194:143–152. doi: 10.1677/JOE-07-0130 PubMedCrossRefGoogle Scholar
  16. 16.
    Angelis E, Tse MY, Pang SC (2005) Interactions between atrial natriuretic peptide and the renin–angiotensin system during salt-sensitivity exhibited by the proANP gene-disrupted mouse. Mol Cell Biochem 276:121–131PubMedCrossRefGoogle Scholar
  17. 17.
    Feng M, DiPetrillo K (2009) Non-invasive blood pressure measurement in mice. Methods Mol Biol 573:45–55. doi: 10.1007/978-1-60761-247-6_3 PubMedCrossRefGoogle Scholar
  18. 18.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91PubMedCrossRefGoogle Scholar
  19. 19.
    Barber PA, Hoyte L, Colbourne F, Buchan AM (2004) Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke 35:1720–1725. doi: 10.1161/01.STR.0000129653.22241.d7 PubMedCrossRefGoogle Scholar
  20. 20.
    Swanson RAR, Morton MTM, Tsao-Wu GG et al (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10:290–293. doi: 10.1038/jcbfm.1990.47 PubMedCrossRefGoogle Scholar
  21. 21.
    Feng M, Whitesall S, Zhang Y et al (2008) Validation of volume–pressure recording tail-cuff blood pressure measurements. Am J Hypertens 21:1288–1291. doi: 10.1038/ajh.2008.301 PubMedCrossRefGoogle Scholar
  22. 22.
    Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293PubMedCrossRefGoogle Scholar
  23. 23.
    H’Doubler PB, Peterson M, Shek W et al (1991) Spontaneously hypertensive and Wistar Kyoto rats are genetically disparate. Lab Anim Sci 41:471–473PubMedGoogle Scholar
  24. 24.
    Rapp JP (1982) Dahl salt-susceptible and salt-resistant rats. A review. Hypertension 4:753–763PubMedCrossRefGoogle Scholar
  25. 25.
    Dahl LK, Heine M, Tassinari L (1962) Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194:480–482. doi: 10.1038/194480b0 PubMedCrossRefGoogle Scholar
  26. 26.
    Armstrong DWJ, Tse MY, O’Tierney-Ginn PF et al (2013) Gestational hypertension in atrial natriuretic peptide knockout mice and the developmental origins of salt-sensitivity and cardiac hypertrophy. Regul Pept 186C:108–115. doi: 10.1016/j.regpep.2013.08.006 CrossRefGoogle Scholar
  27. 27.
    Huang Z, Huang PL, Panahian N et al (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885PubMedCrossRefGoogle Scholar
  28. 28.
    Huang Z, Huang PL, Ma J et al (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-l-arginine. J Cereb Blood Flow Metab 16:981–987. doi: 10.1097/00004647-199609000-00023 PubMedCrossRefGoogle Scholar
  29. 29.
    Azam M, Gupta G, Chen W et al (1998) Genetic mapping of soluble guanylyl cyclase genes : implications for linkage to blood pressure in the Dahl rat. Hypertension 32:149–154. doi: 10.1161/01.HYP.32.1.149 PubMedCrossRefGoogle Scholar
  30. 30.
    Alioglu Z, Orem A, Bulbul I et al (2013) Evaluation of plasma endothelin-1 levels in patients with cerebral infarction. Angiology 53:77–82CrossRefGoogle Scholar
  31. 31.
    Ziv II, Fleminger GG, Djaldetti RR et al (1992) Increased plasma endothelin-1 in acute ischemic stroke. Stroke 23:1014–1016PubMedCrossRefGoogle Scholar
  32. 32.
    Ergul A (2000) Hypertension in black patients: an emerging role of the endothelin system in salt-sensitive hypertension. Hypertension 36:62–67PubMedCrossRefGoogle Scholar
  33. 33.
    Faraco G, Moraga A, Moore J et al (2013) Circulating endothelin-1 alters critical mechanisms regulating cerebral microcirculation. Hypertension 62:759–766. doi: 10.1161/HYPERTENSIONAHA.113.01761/-/DC1 PubMedCrossRefGoogle Scholar
  34. 34.
    Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309PubMedCrossRefGoogle Scholar
  35. 35.
    Hayashi T, Abe K, Suzuki H, Itoyama Y (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:2039–2044. doi: 10.1161/01.STR.28.10.2039 PubMedCrossRefGoogle Scholar
  36. 36.
    Lennmyr F, Ata KA, Funa K et al (1998) Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol 57:874–882PubMedCrossRefGoogle Scholar
  37. 37.
    Sun Y, Jin K, Xie L et al (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851. doi: 10.1172/JCI17977 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845. doi: 10.1038/359843a0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nicole M. Ventura
    • 1
  • Nichole T. Peterson
    • 2
  • M. Yat Tse
    • 1
  • R. David Andrew
    • 1
    • 3
  • Stephen C. Pang
    • 1
  • Albert Y. Jin
    • 1
    • 2
  1. 1.Department of Biomedical and Molecular SciencesQueen’s UniversityKingstonCanada
  2. 2.Department of Medicine (Neurology)Kingston General HospitalKingstonCanada
  3. 3.Centre for NeuroscienceQueen’s UniversityKingstonCanada

Personalised recommendations