Advertisement

Molecular and Cellular Biochemistry

, Volume 398, Issue 1–2, pp 195–206 | Cite as

Acute inhibition of casein kinase 1δ/ε rapidly delays peripheral clock gene rhythms

  • D. J. Kennaway
  • T. J. Varcoe
  • A. Voultsios
  • M. D. Salkeld
  • L. Rattanatray
  • M. J. Boden
Article

Abstract

Circadian rhythms are generated through a transcription-translation feedback loop involving clock genes and the casein kinases CSNK1D and CSNK1E. In this study, we investigated the effects of the casein kinase inhibitor PF-670462 (50 mg/kg) on rhythmic expression of clock genes in the liver, pancreas and suprachiasmatic nucleus (SCN) as well as plasma corticosterone, melatonin and running behaviour in rats and compared them to the responses to a 4 h extension of the light phase. PF-670462 acutely phase delayed the rhythmic transcription of Bmal1, Per1, Per2 and Nr1d1 in both liver and pancreas by 4.5 ± 1.3 and 4.5 ± 1.2 h, respectively, 1 day after administration. In the SCN, the rhythm of Nr1d1 and Dbp mRNA expression was delayed by 4.2 and 4 h, respectively. Despite these changes, the time of peak plasma melatonin secretion was not delayed, although the plasma corticosterone rhythm and onset of wheel-running activity were delayed by 2.1 and 1.1 h, respectively. These changes are in contrast to the effects of the 4 h light extension, which resulted in delays in peak expression of the clock genes of less than 1 h and no change in the melatonin or corticosterone rhythms. The ability of the casein kinase inhibitor to bring about large phase shifts in the rhythms of major metabolic target tissues may lead to new drugs being developed to rapidly phase adjust circadian rhythms to alleviate the metabolic impact of shift work.

Keywords

Circadian Transcription factors Suprachiasmatic nucleus Melatonin Corticosterone 

Abbreviations

Actb

Beta actin

Bmal1

Brain and muscle ARNT-like protein 1, Arntl and Mop3

Nr1d1

Nuclear receptor subfamily 1, group D, member 1, also known as Rev erb alpha

Per1

Period 1

Per2

Period 2

Cry1

Cryptochrome 1

Cry2

Cryptochrome 2

Dbp

D site of albumin promoter (albumin D-box) binding protein

Notes

Acknowledgments

This work was supported by a grant (GNT1029869) from the National Health and Medical Research Council (NHMRC) of Australia to DJK. DJK is an NHMRC Senior Research Fellow. We thank Dr Jeffrey Sprouse and Lundbeck Research USA for the generous gift of PF-670462.

Conflict of interest

The authors have no conflicts of interest.

References

  1. 1.
    Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74:246–260PubMedCrossRefGoogle Scholar
  2. 2.
    Cailotto C, Lei J, van der Vliet J, van Heijningen C, van Eden CG, Kalsbeek A, Pevet P, Buijs RM (2009) Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS ONE 4:e5650PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Teclemariam Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM (1999) Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J Comp Neurol 406:171–182PubMedCrossRefGoogle Scholar
  4. 4.
    St Hilaire MA, Gooley JJ, Khalsa SBS, Kronauer RE, Czeisler CA, Lockley SW (2012) Human phase response curve to a 1 h pulse of bright white light. J Physiol 590:3035–3045PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Spoelstra K, Albrecht U, van der Horst GT, Brauer V, Daan S (2004) Phase responses to light pulses in mice lacking functional per or cry genes. J Biol Rhythms 19:518–529PubMedCrossRefGoogle Scholar
  6. 6.
    Summer TL, Ferraro JS, McCormack CE (1984) Phase-response and Aschoff illuminance curves for locomotor activity rhythm of the rat. Am J Physiol Regul Integr Comp Physiol 246:R299–R304Google Scholar
  7. 7.
    Stepien JM, Kennaway DJ (2001) Phase response relationships between light pulses and the melatonin rhythm in rats. J Biol Rhythms 16:234–242PubMedCrossRefGoogle Scholar
  8. 8.
    Kohler M, Kalkowski A, Wollnik F (1999) Serotonin agonist quipazine induces photic-like phase shifts of the circadian activity rhythm and c-fos expression in the rat suprachiasmatic nucleus. J Biol Rhythms 14:131–140PubMedCrossRefGoogle Scholar
  9. 9.
    Kennaway DJ, Moyer RW (1998) Serotonin 5-HT 2C agonists mimic the effect of light pulses on circadian rhythms. Brain Res 806:257–270PubMedCrossRefGoogle Scholar
  10. 10.
    Kennaway DJ, Rowe SA (2000) Effect of stimulation of endogenous melatonin secretion during constant light exposure on 6-sulphatoxymelatonin rhythmicity in rats. J Pineal Res 28:16–25PubMedCrossRefGoogle Scholar
  11. 11.
    Comas M, Beersma DGM, Spoelstra K, Daan S (2006) Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration. J Biol Rhythms 21:362–372PubMedCrossRefGoogle Scholar
  12. 12.
    Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD (2008) Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging 29:471–477PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lee C, Etchegaray JP, Cagampang FRA, Loudon ASI, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867PubMedCrossRefGoogle Scholar
  15. 15.
    Akashi M, Tsuchiya Y, Yoshino T, Nishida E (2002) Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol 22:1693–1703PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Meng Q-J, Maywood ES, Bechtold DA, Lu W-Q, Li J, Gibbs JE, Dupré SM, Chesham JE, Rajamohan F, Knafels J, Sneed B, Zawadzke LE, Ohren JF, Walton KM, Wager TT, Hastings MH, Loudon ASI (2010) Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci USA 107:15240–15245PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    van Ooijen G, Hindle M, Martin SF, Barrios-Llerena M, Sanchez F, Bouget F-Y, O’Neill JS, Le Bihan T, Millar AJ (2013) Functional analysis of Casein Kinase 1 in a minimal circadian system. PLoS ONE 8:e70021PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Querfurth C, Diernfellner ACR, Gin E, Malzahn E, Höfer T, Brunner M (2011) Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol Cell 43:713–722PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang L, Hastings MH, Green EW, Tauber E, Sladek M, Webster SG, Kyriacou CP, Wilcockson DC (2013) Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra. Curr Biol 23:1863–1873PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Smadja Storz S, Tovin A, Mracek P, Alon S, Foulkes NS, Gothilf Y (2013) Casein kinase 1δ activity: a key element in the zebrafish circadian timing system. PLoS ONE 8:e54189PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Badura L, Swanson T, Adamowicz W, Adams J, Cianfrogna J, Fisher K, Holland J, Kleiman R, Nelson F, Reynolds L, St GK, Schaeffer E, Tate B, Sprouse J (2007) An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained conditions. J Pharmacol Exp Ther 322:730–738PubMedCrossRefGoogle Scholar
  22. 22.
    Sprouse J, Reynolds L, Kleiman R, Tate B, Swanson T, Pickard G (2010) Chronic treatment with a selective inhibitor of casein kinase I δ/ε yields cumulative phase delays in circadian rhythms. Psychopharmacology 210:569–576PubMedCrossRefGoogle Scholar
  23. 23.
    Walton KM, Fisher K, Rubitski D, Marconi M, Meng Q-J, Sladek M, Adams J, Bass M, Chandrasekaran R, Butler T, Griffor M, Rajamohan F, Serpa M, Chen Y, Claffey M, Hastings M, Loudon A, Maywood E, Ohren J, Doran A, Wager TT (2009) Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J Pharmacol Exp Ther 330:430–439PubMedCrossRefGoogle Scholar
  24. 24.
    Kim JK, Forger DB, Marconi M, Wood D, Doran A, Wager T, Chang C, Walton KM (2013) Modeling and validating chronic pharmacological manipulation of circadian rhythms. CPT Pharmacometrics Syst Pharmacol 2:e57PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Sprouse J, Reynolds L, Swanson T, Engwall M (2009) Inhibition of casein kinase I ε/δ produces phase shifts in the circadian rhythms of Cynomolgus monkeys. Psychopharmacology 204:735–742PubMedCrossRefGoogle Scholar
  26. 26.
    Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lamia KA, Storch KF, Weitz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci USA 105:15172–15177PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54:120–124PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Illnerova H, Vanecek J (1987) Entrainment of the circadian rhythm in the rat pineal N-acetyltransferase activity by prolonged periods of light. J Comp Physiol A 161:495–510PubMedCrossRefGoogle Scholar
  30. 30.
    Varcoe TJ, Kennaway DJ, Voultsios A (2003) Activation of 5-HT(2C) receptors acutely induces Per gene expression in the rat suprachiasmatic nucleus at night. Brain Res Mol Brain Res 119:192–200PubMedCrossRefGoogle Scholar
  31. 31.
    Voultsios A, Kennaway DJ, Dawson D (1997) Salivary melatonin as a circadian phase marker: Validation and comparison with plasma melatonin. J Biol Rhythms 12:457–466PubMedGoogle Scholar
  32. 32.
    Oster H, Damerow S, Hut RA, Eichele G (2006) Transcriptional profiling in the adrenal gland reveals circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythms 21:350–361PubMedCrossRefGoogle Scholar
  33. 33.
    Yan L (2009) Expression of clock genes in the suprachiasmatic nucleus: effect of environmental lighting conditions. Rev Endocr Metab Disord 10:301–310PubMedCrossRefGoogle Scholar
  34. 34.
    Reddy AB, Field MD, Maywood ES, Hastings MH (2002) Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci 22:7326–7330PubMedGoogle Scholar
  35. 35.
    Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE, Janszky I, Mrkobrada M, Parraga G, Hackam DG (2012) Shift work and vascular events: systematic review and meta-analysis. BMJ 345:e4800PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Gan Y, Yang C, Tong X, Sun H, Cong Y, Yin X, Li L, Cao S, Dong X, Gong Y, Shi O, Deng J, Bi H, Lu Z (2014) Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med. doi: 10.1136/oemed-2014-102150

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. J. Kennaway
    • 1
  • T. J. Varcoe
    • 1
  • A. Voultsios
    • 1
  • M. D. Salkeld
    • 1
  • L. Rattanatray
    • 1
  • M. J. Boden
    • 1
  1. 1.Robinson Research Institute, School of Paediatrics and Reproductive HealthUniversity of AdelaideAdelaideAustralia

Personalised recommendations