Molecular and Cellular Biochemistry

, Volume 396, Issue 1–2, pp 41–48 | Cite as

Phospho-Cdc25 correlates with activating G2/M checkpoint in mouse zygotes fertilized with hydrogen peroxide-treated mouse sperm

  • Yu Song
  • Zhiling Li
  • Bin Wang
  • Jianfeng Xiao
  • Xiaoyan Wang
  • Jiliang Huang


The presence of oxidative stress in sperm cryopreservation induces sperm DNA damage. Our previous study has discovered that γH2AX, the DNA-damaged marker, was activated in the early mouse embryos fertilized with hydrogen peroxide (H2O2)-treated sperm. Furthermore, we found that checkpoint proteins ATM and Chk1 were phosphorylated and activated in the early mouse embryos. On the basis of previous researches, we examined the effects of sperm DNA damage on cell cycle arrest in mouse zygotes fertilized with H2O2-treated sperm. Development of fertilized eggs arrested at the PN disappearance stage. At 19 and 24 hours post-insemination (hpi), the percentage of zygotes at the PN disappearance stage was higher in H2O2-treated group compared to the control group. Immunofluorescence staining revealed Phospho-Cdc25C (Ser216) and Phospho-Cdc25B (Ser323) in or surrounding a single pronucleus, following insemination with H2O2-treated sperm. Our study suggests that fertilization with DNA-damaged sperm results in cell cycle arrest mediated by G2/M checkpoint activation in one of the pronuclei in mouse zygotes fertilized with H2O2-treated sperm; Phospho-Cdc25C and Phospho-Cdc25B correlate with activating G2/M checkpoint in zygotes fertilized with H2O2-treated sperm.


Sperm cryopreservation Oxidative stress Embryo development G2/M checkpoint Cdc25 



We are grateful for the support from Center for Neuroscience, Shantou University Medical College for the utilization of the laser confocal microscopy.

Conflict of interest

The authors have declared that no conflict of interest exists.


This study was supported by the National Natural Science Foundation of China (No. 81070542 and No. 30872771), the Natural Science Foundation of Guangdong Province of China (No. 10151503102000020 and No. 81515031102000010). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


  1. 1.
    O’Connell M, McClure N, Lewis SE (2002) The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod 17:704–709PubMedCrossRefGoogle Scholar
  2. 2.
    Desrosiers P, Legare C, Leclerc P, Sullivan R (2006) Membranous and structural damage that occur during cryopreservation of human sperm may be time-related events. Fertil Steril 85:1744–1752. doi: 10.1016/j.fertnstert.2005.11.046 PubMedCrossRefGoogle Scholar
  3. 3.
    Lim JJ, Shin TE, Song SH, Bak CW, Yoon TK, Lee DR (2010) Effect of liquid nitrogen vapor storage on the motility, viability, morphology, deoxyribonucleic acid integrity, and mitochondrial potential of frozen–thawed human spermatozoa. Fertil Steril 94:2736–2741. doi: 10.1016/j.fertnstert.2010.02.051 PubMedCrossRefGoogle Scholar
  4. 4.
    Anger JT, Gilbert BR, Goldstein M (2003) Cryopreservation of sperm: indications, methods and results. J Urol 170:1079–1084. doi: 10.1097/01.ju.0000084820.98430.b8 PubMedCrossRefGoogle Scholar
  5. 5.
    Peris SI, Bilodeau JF, Dufour M, Bailey JL (2007) Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Mol Reprod Dev 74:878–892. doi: 10.1002/mrd.20686 PubMedCrossRefGoogle Scholar
  6. 6.
    Chatterjee S, Gagnon C (2001) Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol Reprod Dev 59:451–458. doi: 10.1002/mrd.1052 PubMedCrossRefGoogle Scholar
  7. 7.
    du Plessis SS, McAllister DA, Luu A, Savia J, Agarwal A, Lampiao F (2010) Effects of H(2)O(2) exposure on human sperm motility parameters, reactive oxygen species levels and nitric oxide levels. Andrologia 42:206–210. doi: 10.1111/j.1439-0272.2009.00980.x PubMedCrossRefGoogle Scholar
  8. 8.
    Agarwal A, Said TM (2005) Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int 95:503–507. doi: 10.1111/j.1464-410X.2005.05328.x PubMedCrossRefGoogle Scholar
  9. 9.
    Rube CE, Zhang S, Miebach N, Fricke A, Rube C (2011) Protecting the heritable genome: DNA damage response mechanisms in spermatogonial stem cells. DNA Repair (Amst) 10:159–168. doi: 10.1016/j.dnarep.2010.10.007 CrossRefGoogle Scholar
  10. 10.
    Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4:12. doi: 10.1186/1471-213x-4-12 PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Marchetti F, Wyrobek AJ (2008) DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage. DNA Repair (Amst) 7:572–581. doi: 10.1016/j.dnarep.2007.12.011 CrossRefGoogle Scholar
  12. 12.
    Jaroudi S, SenGupta S (2007) DNA repair in mammalian embryos. Mutat Res 635:53–77. doi: 10.1016/j.mrrev.2006.09.002 PubMedCrossRefGoogle Scholar
  13. 13.
    Jeggo PA, Lobrich M (2006) Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability. DNA Repair (Amst) 5:1192–1198. doi: 10.1016/j.dnarep.2006.05.011 CrossRefGoogle Scholar
  14. 14.
    Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 3:997–1007. doi: 10.1016/j.dnarep.2004.03.006 CrossRefGoogle Scholar
  15. 15.
    Iliakis G, Wang Y, Guan J, Wang H (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22:5834–5847. doi: 10.1038/sj.onc.1206682 PubMedCrossRefGoogle Scholar
  16. 16.
    Niida H, Nakanishi M (2006) DNA damage checkpoints in mammals. Mutagenesis 21:3–9. doi: 10.1093/mutage/gei063 Google Scholar
  17. 17.
    Stark GR, Taylor WR (2006) Control of the G2/M transition. Mol Biotechnol 32:227–248. doi: 10.1385/mb:32:3:227 PubMedCrossRefGoogle Scholar
  18. 18.
    Hu X, Moscinski LC (2011) Cdc2: a monopotent or pluripotent CDK? Cell Prolif 44:205–211. doi: 10.1111/j.1365-2184.2011.00753.x PubMedCrossRefGoogle Scholar
  19. 19.
    Boutros R, Dozier C, Ducommun B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185–191. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  20. 20.
    Xiao J, Liu Y, Li Z, Zhou Y, Lin H, Wu X, Chen M, Xiao W (2012) Effects of the insemination of hydrogen peroxide-treated epididymal mouse spermatozoa on gammaH2AX repair and embryo development. PLoS ONE 7:e38742. doi: 10.1371/journal.pone.0038742 PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wang B, Li Z, Wang C, Chen M, Xiao J, Wu X, Xiao W, Song Y, Wang X (2013) Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm. PLoS ONE 8:e73987. doi: 10.1371/journal.pone.0073987 PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Chen MS, Ryan CE, Piwnica-Worms H (2003) Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23:7488–7497PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Loffler H, Rebacz B, Ho AD, Lukas J, Bartek J, Kramer A (2006) Chk1-dependent regulation of Cdc25B functions to coordinate mitotic events. Cell Cycle 5:2543–2547PubMedCrossRefGoogle Scholar
  24. 24.
    Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505PubMedCrossRefGoogle Scholar
  25. 25.
    Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124:4615–4625PubMedGoogle Scholar
  26. 26.
    Gawecka JE, Marh J, Ortega M, Yamauchi Y, Ward MA, Ward WS (2013) Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS ONE 8:e56385. doi: 10.1371/journal.pone.0056385 PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ahmadi A, Ng SC (1999) Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 284:696–704PubMedCrossRefGoogle Scholar
  28. 28.
    Virro MR, Larson-Cook KL, Evenson DP (2004) Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81:1289–1295. doi: 10.1016/j.fertnstert.2003.09.063 PubMedCrossRefGoogle Scholar
  29. 29.
    Pregl Breznik B, Kovacic B, Vlaisavljevic V (2013) Are sperm DNA fragmentation, hyperactivation, and hyaluronan-binding ability predictive for fertilization and embryo development in in vitro fertilization and intracytoplasmic sperm injection? Fertil Steril 99:1233–1241. doi: 10.1016/j.fertnstert.2012.11.048 PubMedCrossRefGoogle Scholar
  30. 30.
    Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, Coticchio G (2006) Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod 21:2876–2881. doi: 10.1093/humrep/del251 PubMedCrossRefGoogle Scholar
  31. 31.
    Upadhya D, Kalthur G, Kumar P, Rao BS, Adiga SK (2010) Association between the extent of DNA damage in the spermatozoa, fertilization and developmental competence in preimplantation stage embryos. J Turk Ger Gynecol Assoc 11:182–186. doi: 10.5152/jtgga.2010.34 PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323–331PubMedCrossRefGoogle Scholar
  33. 33.
    Sonehara H, Nagata M, Aoki F (2008) Roles of the first and second round of DNA replication in the regulation of zygotic gene activation in mice. J Reprod Dev 54:381–384PubMedCrossRefGoogle Scholar
  34. 34.
    Terzoudi GI, Manola KN, Pantelias GE, Iliakis G (2005) Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res 65:11292–11296. doi: 10.1158/0008-5472.can-05-2148 PubMedCrossRefGoogle Scholar
  35. 35.
    Ouyang G, Yao L, Ruan K, Song G, Mao Y, Bao S (2009) Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biol Int 33:1237–1244. doi: 10.1016/j.cellbi.2009.08.011 PubMedCrossRefGoogle Scholar
  36. 36.
    McGowan CH, Russell P (2004) The DNA damage response: sensing and signaling. Curr Opin Cell Biol 16:629–633. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  37. 37.
    Forrest A, Gabrielli B (2001) Cdc25B activity is regulated by 14-3-3. Oncogene 20:4393–4401PubMedCrossRefGoogle Scholar
  38. 38.
    Chen F, He ML, Bower J, Sbarra D, C M Lin M, Kung HF and Shi X (2002) RETRACTED: Ubiquitination and degradation of Cdc25C contribute to As(III)-induced G2/M cell cycle arrest. J Biol Chem. doi:  10.1074/jbc.M107813200
  39. 39.
    Lau WS, Chen T, Wong YS (2010) Allyl isothiocyanate induces G2/M arrest in human colorectal adenocarcinoma SW620 cells through down-regulation of Cdc25B and Cdc25C. Mol Med Rep 3:1023–1030. doi: 10.3892/mmr.2010.363 PubMedGoogle Scholar
  40. 40.
    Rutenberg J, Cheng SM, Levin M (2002) Early embryonic expression of ion channels and pumps in chick and Xenopus development. Dev Dyn 225:469–484. doi: 10.1002/dvdy.10180 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yu Song
    • 1
  • Zhiling Li
    • 1
  • Bin Wang
    • 1
  • Jianfeng Xiao
    • 1
  • Xiaoyan Wang
    • 1
  • Jiliang Huang
    • 1
  1. 1.Reproductive Center, The First Affiliated Hospital of Shantou University Medical CollegeShantou UniversityShantouPeople’s Republic of China

Personalised recommendations