Molecular and Cellular Biochemistry

, Volume 395, Issue 1–2, pp 291–298 | Cite as

Inhibition of Notch signaling facilitates the differentiation of human-induced pluripotent stem cells into neural stem cells

  • Chun-Yuan Chen
  • Wei Liao
  • Yuan-Lei Lou
  • Qing Li
  • Bin Hu
  • Yang Wang
  • Zhi-Feng Deng


Neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) are becoming an appealing source of cell-based therapies of brain diseases. As such, it is important to understand the molecular mechanisms that regulate the differentiation of iPSCs toward NSCs. It is well known that Notch signaling governs the retention of stem cell features and drives stem cells fate. However, further studies are required to investigate the role of Notch signaling in the NSCs differentiation of iPSCs. In this study, we successfully generated NSCs from human iPSCs using serum-free medium supplemented with retinoic acid (RA) in vitro. We then assessed changes in the expression of Notch signaling-related molecules and some miRNAs (9, 34a, 200b), which exert their regulation by targeting Notch signaling. Moreover, we used a γ-secretase inhibitor (DAPT) to disturb Notch signaling. Data revealed that the levels of the Notch signaling-related molecules decreased, whereas those miRNAs increased, during this differentiation process. Inhibition of Notch signaling accelerated the formation of the neural rosette structures and the expression of NSC and mature neurocyte marker genes. This suggests that Notch signaling negatively regulated the neuralization of human iPSCs, and that this process may be regulated by some miRNAs.


Induced pluripotent stem cell Neural stem cell Differentiation Notch signaling microRNA 



This work was financially supported by the National Natural Science Foundation of China (No: 81160154, 81272170, 81060324), and the innovation team construction plan of Jiangxi Province (20113BCB24018).


  1. 1.
    Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105:5856–5861. doi: 10.1073/pnas.0801677105 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, Wang Y, Deng ZF (2013) Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurological function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther 4:73. doi: 10.1186/scrt224 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Jensen MB, Yan H, Krishnaney-Davison R, Al Sawaf A, Zhang SC (2013) Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis 22:304–308. doi: 10.1016/j.jstrokecerebrovasdis.2011.09.008 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Liu J, Sato C, Cerletti M, Wagers A (2010) Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol 92:367–409. doi: 10.1016/s0070-2153(10)92012-7 PubMedGoogle Scholar
  5. 5.
    Das D, Lanner F, Main H, Andersson ER, Bergmann O, Sahlgren C, Heldring N, Hermanson O, Hansson EM, Lendahl U (2010) Notch induces cyclin-D1-dependent proliferation during a specific temporal window of neural differentiation in ES cells. Dev Biol 348:153–166. doi: 10.1016/j.ydbio.2010.09.018 PubMedGoogle Scholar
  6. 6.
    Lowell S, Benchoua A, Heavey B, Smith AG (2006) Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 4:e121. doi: 10.1371/journal.pbio.0040121 PubMedCentralPubMedGoogle Scholar
  7. 7.
    Zhou X, Smith AJ, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I, Lowell S (2013) Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells 31:1511–1522. doi: 10.1002/stem.1426 PubMedCentralPubMedGoogle Scholar
  8. 8.
    Abdel Aziz MT, Khaled HM, El Hindawi A, Roshdy NK, Rashed LA, Sabry D, Hassouna AA, Taha F, Ali WI (2013) Effect of mesenchymal stem cells and a novel curcumin derivative on Notch1 signaling in hepatoma cell line. Biomed Res Int 2013:129629. doi: 10.1155/2013/129629 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Ables JL, Decarolis NA, Johnson MA, Rivera PD, Gao Z, Cooper DC, Radtke F, Hsieh J, Eisch AJ (2010) Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 30:10484–10492. doi: 10.1523/JNEUROSCI.4721-09.2010 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Woo SM, Kim J, Han HW, Chae JI, Son MY, Cho S, Chung HM, Han YM, Kang YK (2009) Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells. BMC Neurosci 10:97. doi: 10.1186/1471-2202-10-97 PubMedCentralPubMedGoogle Scholar
  11. 11.
    Ciarapica R, Methot L, Tang Y, Lo R, Dali R, Buscarlet M, Locatelli F, del Sal G, Rota R, Stifani S (2014) Prolyl isomerase Pin1 and protein kinase HIPK2 cooperate to promote cortical neurogenesis by suppressing Groucho/TLE:hes1-mediated inhibition of neuronal differentiation. Cell Death Differ 21:321–332. doi: 10.1038/cdd.2013.160 PubMedGoogle Scholar
  12. 12.
    Guo Y, Wang P, Sun H, Cai R, Xia W, Wang S (2014) Advanced glycation end product-induced astrocytic differentiation of cultured neurospheres through inhibition of Notch-Hes1 pathway-mediated neurogenesis. Int J Mol Sci 15:159–170. doi: 10.3390/ijms15010159 PubMedCentralGoogle Scholar
  13. 13.
    Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP (2009) Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18:1093–1108. doi: 10.1089/scd.2009.0113 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Popovska-Jankovic K, Noveski P, Chakalova L, Petrusevska G, Kubelka K, Plaseska-Karanfilska D (2012) MicroRNAs in breast cancer-our initial results. Balkan J Med Genet 15:87–89. doi: 10.2478/v10034-012-0026-7 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Tarantino C, Paolella G, Cozzuto L, Minopoli G, Pastore L, Parisi S, Russo T (2010) miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB J 24:3255–3263. doi: 10.1096/fj.09-152207 PubMedGoogle Scholar
  16. 16.
    Tang J, Yoo AS, Crabtree GR (2013) Reprogramming human fibroblasts to neurons by recapitulating an essential microRNA-chromatin switch. Curr Opin Genet Dev 23:591–598. doi: 10.1016/j.gde.2013.07.001 PubMedGoogle Scholar
  17. 17.
    Aranha MM, Santos DM, Xavier JM, Low WC, Steer CJ, Sola S, Rodrigues CM (2010) Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation. BMC Genom 11:514. doi: 10.1186/1471-2164-11-514 Google Scholar
  18. 18.
    Chang SJ, Weng SL, Hsieh JY, Wang TY, Chang MD, Wang HW (2011) MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genomics 4:65. doi: 10.1186/1755-8794-4-65 PubMedCentralPubMedGoogle Scholar
  19. 19.
    Jing L, Jia Y, Lu J, Han R, Li J, Wang S, Peng T, Jia Y (2011) MicroRNA-9 promotes differentiation of mouse bone mesenchymal stem cells into neurons by Notch signaling. NeuroReport 22:206–211. doi: 10.1097/WNR.0b013e328344a666 PubMedGoogle Scholar
  20. 20.
    Akerblom M, Jakobsson J (2013) MicroRNAs as neuronal fate determinants. Neuroscientist. doi: 10.1177/1073858413497265 PubMedGoogle Scholar
  21. 21.
    Wang Y, Guo F, Pan C, Lou Y, Zhang P, Guo S, Yin J, Deng Z (2012) Effects of low temperatures on proliferation-related signaling pathways in the hippocampus after traumatic brain injury. Exp Biol Med (Maywood) 237:1424–1432. doi: 10.1258/ebm.2012.012123 Google Scholar
  22. 22.
    Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG (2011) MicroRNA profiling in subventricular zone after stroke: miR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One 6:e23461. doi: 10.1371/journal.pone.0023461 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Zhang C, Yao Z, Zhu M, Ma X, Shi T, Li H, Wang B, Ouyang J, Zhang X (2012) Inhibitory effects of microRNA-34a on cell migration and invasion of invasive urothelial bladder carcinoma by targeting Notch1. J Huazhong Univ Sci Technol Med Sci 32:375–382. doi: 10.1007/s11596-012-0065-z PubMedGoogle Scholar
  24. 24.
    Roy S, Levi E, Majumdar AP, Sarkar FH (2012) Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol 5:58. doi: 10.1186/1756-8722-5-58 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Du R, Sun W, Xia L, Zhao A, Yu Y, Zhao L, Wang H, Huang C, Sun S (2012) Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS One 7:e30771. doi: 10.1371/journal.pone.0030771 PubMedCentralPubMedGoogle Scholar
  26. 26.
    Engelsvold DH, Utheim TP, Olstad OK, Gonzalez P, Eidet JR, Lyberg T, Troseid AM, Dartt DA, Raeder S (2013) miRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial-mesenchymal transition in pterygium. Exp Eye Res 115:189–198. doi: 10.1016/j.exer.2013.07.003 PubMedGoogle Scholar
  27. 27.
    Yang Y, Ahn YH, Gibbons DL, Zang Y, Lin W, Thilaganathan N, Alvarez CA, Moreira DC, Creighton CJ, Gregory PA, Goodall GJ, Kurie JM (2011) The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest 121:1373–1385. doi: 10.1172/jci42579 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Liao J, Wu Z, Wang Y, Cheng L, Cui C, Gao Y, Chen T, Rao L, Chen S, Jia N, Dai H, Xin S, Kang J, Pei G, Xiao L (2008) Enhanced efficiency of generating induced pluripotent stem (iPS) cells from human somatic cells by a combination of six transcription factors. Cell Res 18:600–603. doi: 10.1038/cr.2008.51 PubMedGoogle Scholar
  29. 29.
    Wang M, Ma X, Wang J, Wang L, Wang Y (2014) Pretreatment with the gamma-secretase inhibitor DAPT sensitizes drug-resistant ovarian cancer cells to cisplatin by downregulation of Notch signaling. Int J Oncol 44:1401–1409. doi: 10.3892/ijo.2014.2301 PubMedGoogle Scholar
  30. 30.
    Sun F, Mao X, Xie L, Ding M, Shao B, Jin K (2013) Notch1 signaling modulates neuronal progenitor activity in the subventricular zone in response to aging and focal ischemia. Aging Cell 12:978–987. doi: 10.1111/acel.12134 PubMedGoogle Scholar
  31. 31.
    Fouillade C, Baron-Menguy C, Domenga-Denier V, Thibault C, Takamiya K, Huganir R, Joutel A (2013) Transcriptome analysis for Notch3 target genes identifies Grip2 as a novel regulator of myogenic response in the cerebrovasculature. Arterioscler Thromb Vasc Biol 33:76–86. doi: 10.1161/atvbaha.112.251736 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S (2012) Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 139:4536–4548. doi: 10.1242/dev.084756 PubMedGoogle Scholar
  33. 33.
    Pascoal S, Esteves de Lima J, Leslie JD, Hughes SM, Saude L (2013) Notch signalling is required for the formation of structurally stable muscle fibres in zebrafish. PLoS One 8:e68021. doi: 10.1371/journal.pone.0068021 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Hale AT, Tian H, Anih E, Recio FO 3rd, Shatat MA, Johnson T, Liao X, Ramirez-Bergeron DL, Proweller A, Ishikawa M, Hamik A (2014) Endothelial kruppel-like factor 4 regulates angiogenesis and the notch signaling pathway. J Biol Chem. doi: 10.1074/jbc.M113.530956 Google Scholar
  35. 35.
    Wang X, He Z, Xia T, Li X, Liang D, Lin X, Wen H, Lan K (2014) Latency associated nuclear antigen of kaposi’s sarcoma associated herpesvirus promotes angiogenesis through targeting notch signaling effector hey1. Cancer Res. doi: 10.1158/0008-5472.can-13-1467 Google Scholar
  36. 36.
    Grynfeld A, Pahlman S, Axelson H (2000) Induced neuroblastoma cell differentiation, associated with transient HES-1 activity and reduced HASH-1 expression, is inhibited by Notch1. Int J Cancer 88:401–410PubMedGoogle Scholar
  37. 37.
    Ku YC, Renaud NA, Veile RA, Helms C, Voelker CC, Warchol ME, Lovett M (2014) The transcriptome of utricle hair cell regeneration in the avian inner ear. J Neurosci 34:3523–3535. doi: 10.1523/jneurosci.2606-13.2014 PubMedGoogle Scholar
  38. 38.
    Main H, Radenkovic J, Jin SB, Lendahl U, Andersson ER (2013) Notch signaling maintains neural rosette polarity. PLoS One 8:e62959. doi: 10.1371/journal.pone.0062959 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Kanski R, van Strien ME, van Tijn P, Hol EM (2014) A star is born: new insights into the mechanism of astrogenesis. Cell Mol Life Sci 71:433–447. doi: 10.1007/s00018-013-1435-9 PubMedGoogle Scholar
  40. 40.
    Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666. doi: 10.1038/nrg3272 PubMedGoogle Scholar
  41. 41.
    Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. Adv Exp Med Biol 786:329–351. doi: 10.1007/978-94-007-6621-1_18 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Cremisi F (2013) MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci 7:141. doi: 10.3389/fncel.2013.00141 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Bian S, Sun T (2011) Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 44:359–373. doi: 10.1007/s12035-011-8211-3 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Liu XS, Chopp M, Zhang RL, Zhang ZG (2013) MicroRNAs in cerebral ischemia-induced neurogenesis. J Neuropathol Exp Neurol 72:718–722. doi: 10.1097/NEN.0b013e31829e4963 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610. doi: 10.1038/nrg2843 PubMedGoogle Scholar
  46. 46.
    Bonev B, Stanley P, Papalopulu N (2012) MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep 2:10–18. doi: 10.1016/j.celrep.2012.05.017 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Graduate School of Nanchang UniversityNanchangChina
  2. 2.Institute of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
  3. 3.Institute of Orthopaedic SurgeryShanghai Jiaotong University Affiliated Sixth People’s HospitalShanghaiChina
  4. 4.Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People’s HospitalShanghaiChina

Personalised recommendations