Molecular and Cellular Biochemistry

, Volume 394, Issue 1–2, pp 91–99 | Cite as

Effects of residue 5-point mutation and N-terminus hydrophobic residues on temporin-SHc physicochemical and biological properties

  • Feten Abbassi
  • Christophe Piesse
  • Thierry Foulon
  • Pierre Nicolas
  • Ali Ladram


Temporin-SHc (FLSHIAGFLSNLFamide) first isolated from skin extraction of the Tunisian frog Pelophylax saharica, which shows potent antimicrobial activity against Gram-positive bacteria and is highly active against yeasts and fungi without hemolytic activity at antimicrobial concentrations. The peptide adopts well-defined α-helical conformation when bound to SDS micelles. In this study, we explored the effects of residue at position 5 and the N-terminus hydrophobic character on the hydrophilic/polar face of temp-SHc, on its biological activities (antimicrobial and hemolytic) and biophysical properties (hydrophobicity, amphipathicity and helicity). Antibacterial and hemolytic properties of temporin-SHc derivatives depend strongly on physicochemical properties. Therefore, slight decreasing amphipathicity together with hydrophobicity and helicity by the substitution Ile5 → Leu decreased antimicrobial potency approximately twofold without changing of hemolytic activity. It is noteworthy that a conservative amino acid substitution decreases the antimicrobial activity, underlining the differences between Leu/Ile side chains insertion into the lipid bilayer. While the modification of N-terminal hydrophobic character by four residue inversion decreased amphipathicity (twofold) of (4-1)L5temp-SHc and resulted in an increase in antibacterial activity against E. coli, E. faecalis and C. parapsilosis of at least fourfold, its therapeutic potential is limited by its drastic increase of hemolysis (LC50 = 2 μM). We found that the percentage of helicity of temp-SHc analog is directly correlated to its hemolytic activity. Last, the hydrophobic N-terminal character is an important determinant of antimicrobial activity.


Temporin-SHc, derivatives, antimicrobial activity Hemolytic activity, amphipathicity Helicity Hydrophobicity Side chain 



This work was supported by grants from the Centre National de la Recherche Scientifique (CNRS) in France and from the Ministry of Higher Education and Scientific Research in Tunisia.

Conflict of interest

The authors confirm that this article content has no conflicts of interest.


  1. 1.
    Mangoni ML, Saugar JM, Dellisanti M, Barra D, Simmaco M, Rivas L (2005) Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem 280(984):990. doi: 10.1074/jbc.M410795200 Google Scholar
  2. 2.
    Abbassi F, Lequin O, Piesse C, Goasdoué N, Foulon T, Nicolas P, Ladram A (2010) Temporin-SHf a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem 285:16880–16992. doi: 10.1074/jbc.M109.097204 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Grieco P, Luca V, Auriemma L, Carotenuto A, Saviello MR, Campiglia P, Barra D, Novellino E, Mangoni ML (2011) Alanine scanning analysis and structure-function relationships of the frog-skin antimicrobial peptide temporin-1Ta. J Pept Sci 17:358–365. doi: 10.1002/psc.1350 PubMedCrossRefGoogle Scholar
  4. 4.
    Abbassi F, Galanth C, Amiche M, Saito K, Piesse C, Zargarian L, Hani K, Nicolas P, Lequin O, Ladram A (2008) Solution structure and model membrane interactions of temporins-SH antimicrobial peptides from amphibian skin A NMR spectroscopy and differential scanning calorimetry study. Biochemistry 47:10513–11525. doi: 10.1021/bi8006884 PubMedCrossRefGoogle Scholar
  5. 5.
    Mangoni ML, Carotenuto A, Auriemma L, Saviello MR, Campiglia P, Gomez-Monterrey I, Malfi S, Marcellini L, Barra D, Novellino E, Grieco P (2011) Structure-activity relationship conformational and biological studies of temporin L analogues. J Med Chem 54:1298–1307. doi: 10.1021/jm1012853 PubMedCrossRefGoogle Scholar
  6. 6.
    Kamysz W, Mickiewicz B, Rodziewicz-Motowidło S, Greber K, Okrój M (2006) Temporin A and its retro-analogues: synthesis conformational analysis and antimicrobial activities. J Pept Sci 12:533–537. doi: 10.1002/psc.762 PubMedCrossRefGoogle Scholar
  7. 7.
    Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55. doi: 10.1124/pr.55.1.2 PubMedCrossRefGoogle Scholar
  8. 8.
    Won A, Pripotnev S, Ruscito A, Ianoul A (2011) Effect of point mutations on the secondary structure and membrane interaction of antimicrobial peptide anoplin. J Phys Chem B 115:2371–2379. doi: 10.1021/jp108343g PubMedCrossRefGoogle Scholar
  9. 9.
    Abbassi F, Oury B, Blasco T, Sereno D, Bolbach G, Nicolas P, Hani K, Amiche M, Ladram A (2008) Isolation characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica. Peptides 29:1526–1533. doi: 10.1016/j.peptides.2008.05.008 PubMedCrossRefGoogle Scholar
  10. 10.
    Abbassi F, Raja Z, Oury B, Gazanion E, Piesse C, Sereno D, Nicolas P, Foulon T, Ladram A (2013) Antibacterial and leishmanicidal activities of temporin-SHd a 17-residue long membrane-damaging peptide. Biochimie 95:388–399. doi: 10.1016/j.biochi.2012.10.015 PubMedCrossRefGoogle Scholar
  11. 11.
    Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53:595–623. doi: 10.1146/annurev.biochem.53.1.595 PubMedCrossRefGoogle Scholar
  12. 12.
    Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005) Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329. doi: 10.1074/jbc.M413406200 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Unneberg P, Merelo JJ, Chacón P, Morán F (2001) SOMCD: method for evaluating protein secondary structure from UV circular dichroism spectra. Proteins 42:460–470Google Scholar
  14. 14.
    Bhunia A, Saravanan R, Mohanram H, Mangoni ML, Bhattacharjya S (2011) NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles. J Biol Chem 286:24394–24406. doi: 10.1074/jbc.M110.189662 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wade D, Silveira A, Silberring J, Kuusela P, Lankinen H (2000) Temporin antibiotic peptides: a review and derivation of a consensus sequence. Protein Pept Lett 7:349–357Google Scholar
  16. 16.
    Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides-using a sequence template to guide structure–activity relationship studies. BBA Biomembranes 1758:1436–1449. doi: 10.1016/j.bbamem.2006.03.021 PubMedCrossRefGoogle Scholar
  17. 17.
    Chothia C (1976) The nature of the accessible and buried surfaces in proteins. J Mol Biol 105:1–14PubMedCrossRefGoogle Scholar
  18. 18.
    Creighton TE (1983) Proteins structures and molecular properties. Freeman, New York 42Google Scholar
  19. 19.
    MacCallum JL, Drew-Bennett WF, Tielema DP (2008) Distribution of amino acids in a lipid bilayer from computer simulations. Biophys J 94:3393–3404. doi: 10.1529/biophysj.107.112805 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wan CK, Han W, Wu YD (2012) Parameterization of PACE force field for membrane environment and simulation of helical peptides and Helix_Helix association. J Chem Theory Comput 8:300–313. doi: 10.1021/ct2004275 CrossRefGoogle Scholar
  21. 21.
    Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 90:369–383. doi: 10.1002/bip.20911 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Yount NY, Yeaman MR (2005) Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Peptide Lett 12:49–67. doi: 10.2174/0929866053405959 CrossRefGoogle Scholar
  23. 23.
    Tossi A, Sandri L, Giangaspero A (2000) Amphipathic alpha-helical antimicrobial peptides. Biopolymers 55:4–30. doi: 10.2174/0929866053405959 PubMedCrossRefGoogle Scholar
  24. 24.
    Meijer AB, Spruijt RB, Wolfs CJ, Hemminga MA (2001) Membrane-anchoring interactions of M13 major coat protein. Biochemistry 40: 8815–8820.
  25. 25.
    Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. BBA Proteins Proteom 1696:1–14. doi: 10.1016/j.bbapap.2003.09.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Feten Abbassi
    • 1
    • 3
  • Christophe Piesse
    • 2
  • Thierry Foulon
    • 1
  • Pierre Nicolas
    • 1
  • Ali Ladram
    • 1
  1. 1.UPMC Univ Paris 06, ER3 Biogenèse des Signaux Peptidiques (BIOSIPE)Université Pierre et Marie CurieParisFrance
  2. 2.UPMC Univ Paris 06IFR 83 Plate-forme Ingénierie des Protéines et Synthèse PeptidiqueParisFrance
  3. 3.Ecole Supérieure des Sciences et Techniques de la Santé de MonastirUniversité de MonastirMonastirTunisie

Personalised recommendations