Skip to main content
Log in

Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondria have a crucial role in the supply of energy to the brain. Mitochondrial alterations can lead to detrimental consequences on the function of brain cells and are thought to have a pivotal role in the pathogenesis of several neurologic disorders. This study was aimed to evaluate mitochondrial function, fusion–fission and biogenesis and autophagy in brain cortex of 6-month-old Goto–Kakizaki (GK) rats, an animal model of nonobese type 2 diabetes (T2D). No statistically significant alterations were observed in mitochondrial respiratory chain and oxidative phosphorylation system. A significant decrease in the protein levels of OPA1, a protein that facilitates mitochondrial fusion, was observed in brain cortex of GK rats. Furthermore, a significant decrease in the protein levels of LC3-II and a significant increase in protein levels of mTOR phosphorylated at serine residue 2448 were observed in GK rats suggesting a suppression of autophagy in diabetic brain cortex. No significant alterations were observed in the parameters related to mitochondrial biogenesis. Altogether, these results demonstrate that during the early stages of T2D, brain mitochondrial function is maintained in part due to a delicate balance between mitochondrial fusion–fission and biogenesis and autophagy. However, future studies are warranted to evaluate the role of mitochondrial quality control pathways in late stages of T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lam DW, LeRoith D (2012) The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes 19(2):93–96. doi:10.1097/MED.0b013e328350583a

    Article  PubMed  Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053. doi:10.2337/diacare.27.5.1047

    Article  PubMed  Google Scholar 

  3. Umegaki H (2012) Neurodegeneration in diabetes mellitus. Adv Exp Med Biol 724:258–265. doi:10.1007/978-1-4614-0653-2_19

    Article  CAS  PubMed  Google Scholar 

  4. Sr-F J, Sa-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves ML, Moriguti JC, Roriz-Cruz M (2009) (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta 1792(5):432–443. doi:10.1016/j.bbadis.2008.12.003

    Article  Google Scholar 

  5. Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, Oliveira CR, Moreira PI (2012) Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer’s disease and diabetes interrelation. Brain Res 1441:64–78. doi:10.1016/j.brainres.2011.12.063

    Article  CAS  PubMed  Google Scholar 

  6. Santiago JA, Potashkin JA (2013) Shared dysregulated pathways lead to Parkinson’s disease and diabetes. Trends Mol Med 19(3):176–186. doi:10.1016/j.molmed.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  7. Carvalho C, Cardoso S, Correia SC, Santos RX, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2012) Metabolic alterations induced by sucrose intake and Alzheimer’s disease promote similar brain mitochondrial abnormalities. Diabetes 61(5):1234–1242. doi:10.2337/db11-1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning. Int J Clin Exp Pathol 3(6):570–581

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Zhu J, Wang KZ, Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy and cell survival. Autophagy 9(11). doi:10.4161/auto.24135

  10. DuBoff B, Feany M, Gotz J (2013) Why size matters - balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci 36(6):325–335. doi:10.1016/j.tins.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  11. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99. doi:10.1146/annurev.cellbio.22.010305.104638

    Article  CAS  PubMed  Google Scholar 

  12. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097. doi:10.1016/j.bbabio.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  13. Moreira PI, Santos MS, Moreno A, Oliveira C (2001) Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep 21(6):789–800

    Article  CAS  PubMed  Google Scholar 

  14. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    CAS  PubMed  Google Scholar 

  15. Estabrook RE (1967) Mitochondrial respiratory control and the polarographic measurement of ADP/O ratios. Methods Enzymol 10:41–47

    Article  CAS  Google Scholar 

  16. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134

    CAS  PubMed  Google Scholar 

  17. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49(2):105–121

    Article  CAS  PubMed  Google Scholar 

  18. Jensen BD, Gunter TR (1984) The use of tertaphenylphosphonium (TPP +) to measure membrane potentials in mitochondria: membrane binding and respiratory effects. Biophys J 45:92

    Google Scholar 

  19. Muratsugu M, Kamo N, Kurihara K, Kobatake Y (1977) Selective electrode for dibenzyl dimethyl ammonium cation as indicator of the membrane potential in biological systems. Biochim Biophys Acta 464(3):613–619

    Article  CAS  PubMed  Google Scholar 

  20. Fuke S, Kubota-Sakashita M, Kasahara T, Shigeyoshi Y, Kato T (2011) Regional variation in mitochondrial DNA copy number in mouse brain. Biochim Biophys Acta 1807(3):270–274. doi:10.1016/j.bbabio.2010.11.016

    Article  CAS  PubMed  Google Scholar 

  21. Santos RX, Cardoso S, Correia S, Carvalho C, Santos MS, Moreira PI (2010) Targeting autophagy in the brain: a promising approach? Cent Nerv Syst Agents Med Chem 10(2):158–168

    Article  CAS  PubMed  Google Scholar 

  22. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641–C657. doi:10.1152/ajpcell.00222.2006

    Article  CAS  PubMed  Google Scholar 

  23. Moreira PI, Santos MS, Moreno AM, Seica R, Oliveira CR (2003) Increased vulnerability of brain mitochondria in diabetic (Goto–Kakizaki) rats with aging and amyloid-beta exposure. Diabetes 52(6):1449–1456

    Article  CAS  PubMed  Google Scholar 

  24. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884. doi:10.1038/nrm3013

    Article  CAS  PubMed  Google Scholar 

  25. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. doi:10.1093/hmg/ddp326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879. doi:10.1038/nrm2275

    Article  CAS  PubMed  Google Scholar 

  27. Schmeichel AM, Schmelzer JD, Low PA (2003) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52(1):165–171

    Article  CAS  PubMed  Google Scholar 

  28. Leinninger GM, Backus C, Sastry AM, Yi YB, Wang CW, Feldman EL (2006) Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 23(1):11–22. doi:10.1016/j.nbd.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  29. Edwards JL, Quattrini A, Lentz SI, Figueroa-Romero C, Cerri F, Backus C, Hong Y, Feldman EL (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53(1):160–169. doi:10.1007/s00125-009-1553-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, Quattrini A, Feldman EL (2010) Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 120(4):477–489. doi:10.1007/s00401-010-0697-7

    Article  CAS  PubMed  Google Scholar 

  31. Kim B, McLean LL, Philip SS, Feldman EL (2011) Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons. Endocrinology 152(10):3638–3647. doi:10.1210/en.2011-0029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yoon Y, Galloway CA, Jhun BS, Yu T (2011) Mitochondrial dynamics in diabetes. Antioxid Redox Signal 14(3):439–457. doi:10.1089/ars.2010.3286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Cagalinec M, Safiulina D, Liiv M, Liiv J, Choubey V, Wareski P, Veksler V, Kaasik A (2013) Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126(Pt 10):2187–2197. doi:10.1242/jcs.118844

    Article  CAS  PubMed  Google Scholar 

  34. Tondera D, Czauderna F, Paulick K, Schwarzer R, Kaufmann J, Santel A (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118(Pt 14):3049–3059. doi:10.1242/jcs.02415

    Article  CAS  PubMed  Google Scholar 

  35. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780. doi:10.1146/annurev.biochem.76.071905.090048

    Article  CAS  PubMed  Google Scholar 

  36. Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47(3):365–378. doi:10.1016/j.neuron.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  37. Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116(Pt 13):2763–2774. doi:10.1242/jcs.00479

    Article  CAS  PubMed  Google Scholar 

  38. Cardoso S, Santos RX, Correia SC, Carvalho C, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2012) Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiol Dis 49C:1–12. doi:10.1016/j.nbd.2012.08.008

    PubMed  Google Scholar 

  39. Belanger A, Lavoie N, Trudeau F, Massicotte G, Gagnon S (2004) Preserved LTP and water maze learning in hyperglycaemic–hyperinsulinemic ZDF rats. Physiol Behav 83(3):483–494. doi:10.1016/j.physbeh.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  40. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17(4):491–506. doi:10.1016/j.cmet.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  41. Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial–lysosomal axis theory of aging. Antioxid Redox Signal 12(4):503–535. doi:10.1089/ars.2009.2598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12(Suppl 2):1535–1541. doi:10.1038/sj.cdd.4401728

    Article  CAS  PubMed  Google Scholar 

  43. Kang C, Avery L (2008) To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4(1):82–84

    Article  PubMed  Google Scholar 

  44. King AJ (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894. doi:10.1111/j.1476-5381.2012.01911.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Meijer AJ, Codogno P (2006) Signalling and autophagy regulation in health, aging and disease. Mol Asp Med 27(5–6):411–425. doi:10.1016/j.mam.2006.08.002

    Article  CAS  Google Scholar 

  46. Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, Gulick J, Yue Z, Robbins J, Epstein PN, Liang Q (2013) Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288(25):18077–18092. doi:10.1074/jbc.M113.474650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kobayashi S, Xu X, Chen K, Liang Q (2012) Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8(4):577–592. doi:10.4161/auto.18980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB (2007) Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol 225(2):214–220. doi:10.1016/j.taap.2007.07.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Renato X. Santos has a PhD fellowship from the Fundação para a Ciência e a Tecnologia (SFRH/BD/43972/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Moreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, R.X., Correia, S.C., Alves, M.G. et al. Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes. Mol Cell Biochem 394, 13–22 (2014). https://doi.org/10.1007/s11010-014-2076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2076-5

Keywords

Navigation