Molecular and Cellular Biochemistry

, Volume 394, Issue 1–2, pp 13–22 | Cite as

Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes

  • R. X. Santos
  • S. C. Correia
  • M. G. Alves
  • P. F. Oliveira
  • S. Cardoso
  • C. Carvalho
  • R. Seiça
  • M. S. Santos
  • P. I. Moreira


Mitochondria have a crucial role in the supply of energy to the brain. Mitochondrial alterations can lead to detrimental consequences on the function of brain cells and are thought to have a pivotal role in the pathogenesis of several neurologic disorders. This study was aimed to evaluate mitochondrial function, fusion–fission and biogenesis and autophagy in brain cortex of 6-month-old Goto–Kakizaki (GK) rats, an animal model of nonobese type 2 diabetes (T2D). No statistically significant alterations were observed in mitochondrial respiratory chain and oxidative phosphorylation system. A significant decrease in the protein levels of OPA1, a protein that facilitates mitochondrial fusion, was observed in brain cortex of GK rats. Furthermore, a significant decrease in the protein levels of LC3-II and a significant increase in protein levels of mTOR phosphorylated at serine residue 2448 were observed in GK rats suggesting a suppression of autophagy in diabetic brain cortex. No significant alterations were observed in the parameters related to mitochondrial biogenesis. Altogether, these results demonstrate that during the early stages of T2D, brain mitochondrial function is maintained in part due to a delicate balance between mitochondrial fusion–fission and biogenesis and autophagy. However, future studies are warranted to evaluate the role of mitochondrial quality control pathways in late stages of T2D.


Autophagy Brain cortex Type 2 diabetes Mitochondrial fusion–fission Mitochondrial biogenesis Quality control 



Renato X. Santos has a PhD fellowship from the Fundação para a Ciência e a Tecnologia (SFRH/BD/43972/2008).


  1. 1.
    Lam DW, LeRoith D (2012) The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes 19(2):93–96. doi: 10.1097/MED.0b013e328350583a PubMedCrossRefGoogle Scholar
  2. 2.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053. doi: 10.2337/diacare.27.5.1047 PubMedCrossRefGoogle Scholar
  3. 3.
    Umegaki H (2012) Neurodegeneration in diabetes mellitus. Adv Exp Med Biol 724:258–265. doi: 10.1007/978-1-4614-0653-2_19 PubMedCrossRefGoogle Scholar
  4. 4.
    Sr-F J, Sa-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves ML, Moriguti JC, Roriz-Cruz M (2009) (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta 1792(5):432–443. doi: 10.1016/j.bbadis.2008.12.003 CrossRefGoogle Scholar
  5. 5.
    Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, Oliveira CR, Moreira PI (2012) Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer’s disease and diabetes interrelation. Brain Res 1441:64–78. doi: 10.1016/j.brainres.2011.12.063 PubMedCrossRefGoogle Scholar
  6. 6.
    Santiago JA, Potashkin JA (2013) Shared dysregulated pathways lead to Parkinson’s disease and diabetes. Trends Mol Med 19(3):176–186. doi: 10.1016/j.molmed.2013.01.002 PubMedCrossRefGoogle Scholar
  7. 7.
    Carvalho C, Cardoso S, Correia SC, Santos RX, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2012) Metabolic alterations induced by sucrose intake and Alzheimer’s disease promote similar brain mitochondrial abnormalities. Diabetes 61(5):1234–1242. doi: 10.2337/db11-1186 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) Alzheimer’s disease: diverse aspects of mitochondrial malfunctioning. Int J Clin Exp Pathol 3(6):570–581PubMedCentralPubMedGoogle Scholar
  9. 9.
    Zhu J, Wang KZ, Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy and cell survival. Autophagy 9(11). doi: 10.4161/auto.24135
  10. 10.
    DuBoff B, Feany M, Gotz J (2013) Why size matters - balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci 36(6):325–335. doi: 10.1016/j.tins.2013.03.002 PubMedCrossRefGoogle Scholar
  11. 11.
    Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99. doi: 10.1146/annurev.cellbio.22.010305.104638 PubMedCrossRefGoogle Scholar
  12. 12.
    Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097. doi: 10.1016/j.bbabio.2008.05.001 PubMedCrossRefGoogle Scholar
  13. 13.
    Moreira PI, Santos MS, Moreno A, Oliveira C (2001) Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep 21(6):789–800PubMedCrossRefGoogle Scholar
  14. 14.
    Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766PubMedGoogle Scholar
  15. 15.
    Estabrook RE (1967) Mitochondrial respiratory control and the polarographic measurement of ADP/O ratios. Methods Enzymol 10:41–47CrossRefGoogle Scholar
  16. 16.
    Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65–134PubMedGoogle Scholar
  17. 17.
    Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49(2):105–121PubMedCrossRefGoogle Scholar
  18. 18.
    Jensen BD, Gunter TR (1984) The use of tertaphenylphosphonium (TPP +) to measure membrane potentials in mitochondria: membrane binding and respiratory effects. Biophys J 45:92Google Scholar
  19. 19.
    Muratsugu M, Kamo N, Kurihara K, Kobatake Y (1977) Selective electrode for dibenzyl dimethyl ammonium cation as indicator of the membrane potential in biological systems. Biochim Biophys Acta 464(3):613–619PubMedCrossRefGoogle Scholar
  20. 20.
    Fuke S, Kubota-Sakashita M, Kasahara T, Shigeyoshi Y, Kato T (2011) Regional variation in mitochondrial DNA copy number in mouse brain. Biochim Biophys Acta 1807(3):270–274. doi: 10.1016/j.bbabio.2010.11.016 PubMedCrossRefGoogle Scholar
  21. 21.
    Santos RX, Cardoso S, Correia S, Carvalho C, Santos MS, Moreira PI (2010) Targeting autophagy in the brain: a promising approach? Cent Nerv Syst Agents Med Chem 10(2):158–168PubMedCrossRefGoogle Scholar
  22. 22.
    Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641–C657. doi: 10.1152/ajpcell.00222.2006 PubMedCrossRefGoogle Scholar
  23. 23.
    Moreira PI, Santos MS, Moreno AM, Seica R, Oliveira CR (2003) Increased vulnerability of brain mitochondria in diabetic (Goto–Kakizaki) rats with aging and amyloid-beta exposure. Diabetes 52(6):1449–1456PubMedCrossRefGoogle Scholar
  24. 24.
    Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11(12):872–884. doi: 10.1038/nrm3013 PubMedCrossRefGoogle Scholar
  25. 25.
    Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. doi: 10.1093/hmg/ddp326 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879. doi: 10.1038/nrm2275 PubMedCrossRefGoogle Scholar
  27. 27.
    Schmeichel AM, Schmelzer JD, Low PA (2003) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52(1):165–171PubMedCrossRefGoogle Scholar
  28. 28.
    Leinninger GM, Backus C, Sastry AM, Yi YB, Wang CW, Feldman EL (2006) Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 23(1):11–22. doi: 10.1016/j.nbd.2006.01.017 PubMedCrossRefGoogle Scholar
  29. 29.
    Edwards JL, Quattrini A, Lentz SI, Figueroa-Romero C, Cerri F, Backus C, Hong Y, Feldman EL (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53(1):160–169. doi: 10.1007/s00125-009-1553-y PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, Quattrini A, Feldman EL (2010) Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 120(4):477–489. doi: 10.1007/s00401-010-0697-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Kim B, McLean LL, Philip SS, Feldman EL (2011) Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons. Endocrinology 152(10):3638–3647. doi: 10.1210/en.2011-0029 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Yoon Y, Galloway CA, Jhun BS, Yu T (2011) Mitochondrial dynamics in diabetes. Antioxid Redox Signal 14(3):439–457. doi: 10.1089/ars.2010.3286 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Cagalinec M, Safiulina D, Liiv M, Liiv J, Choubey V, Wareski P, Veksler V, Kaasik A (2013) Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 126(Pt 10):2187–2197. doi: 10.1242/jcs.118844 PubMedCrossRefGoogle Scholar
  34. 34.
    Tondera D, Czauderna F, Paulick K, Schwarzer R, Kaufmann J, Santel A (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118(Pt 14):3049–3059. doi: 10.1242/jcs.02415 PubMedCrossRefGoogle Scholar
  35. 35.
    Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780. doi: 10.1146/annurev.biochem.76.071905.090048 PubMedCrossRefGoogle Scholar
  36. 36.
    Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47(3):365–378. doi: 10.1016/j.neuron.2005.06.018 PubMedCrossRefGoogle Scholar
  37. 37.
    Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116(Pt 13):2763–2774. doi: 10.1242/jcs.00479 PubMedCrossRefGoogle Scholar
  38. 38.
    Cardoso S, Santos RX, Correia SC, Carvalho C, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2012) Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiol Dis 49C:1–12. doi: 10.1016/j.nbd.2012.08.008 PubMedGoogle Scholar
  39. 39.
    Belanger A, Lavoie N, Trudeau F, Massicotte G, Gagnon S (2004) Preserved LTP and water maze learning in hyperglycaemic–hyperinsulinemic ZDF rats. Physiol Behav 83(3):483–494. doi: 10.1016/j.physbeh.2004.08.031 PubMedCrossRefGoogle Scholar
  40. 40.
    Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17(4):491–506. doi: 10.1016/j.cmet.2013.03.002 PubMedCrossRefGoogle Scholar
  41. 41.
    Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial–lysosomal axis theory of aging. Antioxid Redox Signal 12(4):503–535. doi: 10.1089/ars.2009.2598 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Mizushima N (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12(Suppl 2):1535–1541. doi: 10.1038/sj.cdd.4401728 PubMedCrossRefGoogle Scholar
  43. 43.
    Kang C, Avery L (2008) To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4(1):82–84PubMedCrossRefGoogle Scholar
  44. 44.
    King AJ (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894. doi: 10.1111/j.1476-5381.2012.01911.x PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Meijer AJ, Codogno P (2006) Signalling and autophagy regulation in health, aging and disease. Mol Asp Med 27(5–6):411–425. doi: 10.1016/j.mam.2006.08.002 CrossRefGoogle Scholar
  46. 46.
    Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, Gulick J, Yue Z, Robbins J, Epstein PN, Liang Q (2013) Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288(25):18077–18092. doi: 10.1074/jbc.M113.474650 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Kobayashi S, Xu X, Chen K, Liang Q (2012) Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8(4):577–592. doi: 10.4161/auto.18980 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB (2007) Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol 225(2):214–220. doi: 10.1016/j.taap.2007.07.015 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. X. Santos
    • 1
    • 2
  • S. C. Correia
    • 2
    • 3
  • M. G. Alves
    • 4
  • P. F. Oliveira
    • 4
  • S. Cardoso
    • 1
    • 2
  • C. Carvalho
    • 1
    • 2
  • R. Seiça
    • 5
    • 6
  • M. S. Santos
    • 1
    • 2
  • P. I. Moreira
    • 2
    • 6
  1. 1.Department of Life Sciences – Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  2. 2.CNC - Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  3. 3.Institute for Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
  4. 4.CICS – UBI – Health Sciences Research CentreUniversity of Beira InteriorCovilhãPortugal
  5. 5.Faculty of Medicine, IBILI - Institute for Biomedical Imaging and Life SciencesUniversity of CoimbraCoimbraPortugal
  6. 6.Laboratory of Physiology – Faculty of MedicineUniversity of CoimbraCoimbraPortugal

Personalised recommendations