Advertisement

Molecular and Cellular Biochemistry

, Volume 393, Issue 1–2, pp 309–317 | Cite as

Identification, purification and partial characterization of low molecular weight protein inhibitor of Na+/K+-ATPase from pulmonary artery smooth muscle cells

  • Sayed Modinur Rahaman
  • Kuntal Dey
  • Partha Das
  • Soumitra Roy
  • Tapati Chakraborti
  • Sajal Chakraborti
Article

Abstract

We have identified a novel endogenous low mol wt. (15.6 kDa) protein inhibitor of Na+/K+-ATPase in cytosolic fraction of bovine pulmonary artery smooth muscle cells. The inhibitor showed different affinities toward the α2β1 and α1β1 isozymes of Na+/K+-ATPase, where α2 is more sensitive than α1. The inhibitor interacted reversibly to the E1 site of the enzyme and blocked the phosphorylated intermediate formation. Circular dichroism study suggests that the inhibitor causes an alteration in the confirmation of the enzyme.

Keywords

Na+/K+-ATPase Protein inhibitor Ouabain Pulmonary smooth muscle cells 

Notes

Acknowledgments

Financial assistance from the Council of Scientific and Industrial Research (Govt. of India) and DST-PURSE program of the University of Kalyani is greatly acknowledged.

Conflict of interest

There is no conflict of interest.

References

  1. 1.
    Dostanic-Larson I, Van Huysse JW, Lorenz JN, Lingrel JB (2005) The highly conserved cardiac glycoside binding site of Na+/K+-ATPase plays a role in blood pressure regulation. Proc Natl Acad Sci USA 102:15845–15850PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Blanco G, Mercer RW (1996) Isozymes of the Na+/K+-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650Google Scholar
  3. 3.
    Dey K, Roy S, Ghosh B, Chakraborti S (2012) Role of protein kinase C in phospholemman mediated regulation of α2β1 isozyme of Na+/K+-ATPase in caveolae of pulmonary artery smooth muscle cells. Biochimie 94:991–1000PubMedCrossRefGoogle Scholar
  4. 4.
    Ghosh B, Kar P, Mandal A, Dey K, Chakraborti T, Chakraborti S (2009) Ca2+ influx mechanisms in caveolae vesicles of pulmonary smooth muscle plasma membrane under inhibition of α2β1 isozyme of Na+/K+-ATPase by ouabain. Life Sci 84:139–148PubMedCrossRefGoogle Scholar
  5. 5.
    Lingrel JB (1992) Na+/K+-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24:263–270PubMedGoogle Scholar
  6. 6.
    Kairane C, Zilmer M, Mutt V, Sillard R (1994) Activation of Na+/K+-ATPase by an endogenous peptide, PEC-60. FEBS Lett 23:1–4CrossRefGoogle Scholar
  7. 7.
    Tamura M, Naruse M, Sakakibara M, Inagami T, Towbin H, Staehelin T, Gordon J (1993) Isolation of an endogenous Na-pump specific inhibitor from normal pig urine: characterization and comparison with the inhibitor purified from bovine adrenal glands. Biochim Biophys Acta 1157:15–22PubMedCrossRefGoogle Scholar
  8. 8.
    HaupertJr GT (1988) Physiological inhibitors of Na+/K+-ATPase: concept and status. Prog Clin Biol Res 268:297–320Google Scholar
  9. 9.
    Gonick HC, Saldanha LF (1975) A natriuretic principle derived from kidney tissue of volume expanded rats. J Clin Invest 56:247–255PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Louis F, Favre H (1980) Basal activity of the natriuretic factor extracted from the rat kidney as a function of the diet and its role in the regulation of the acute sodium balance. Clin Sci 58:385–391PubMedGoogle Scholar
  11. 11.
    Haupert GT, Sancho JM (1979) Sodium transport inhibitor from bovine hypothalamus. Proc Natl Acad Sci USA 76:4658–4660PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Buckalew VM Jr, Nelson DB (1974) Natriuretic and sodium transport inhibitory activity in plasma of volume-expanded dogs. Kidney Int 5:12–22PubMedCrossRefGoogle Scholar
  13. 13.
    Clarkson E, Raw SM, de Wardener HE (1979) Further observations on a low-molecular-weight natriuretic substance in the urine of normal man. Kidney Int 16:710–721PubMedCrossRefGoogle Scholar
  14. 14.
    Cloix JF, Crabos M, Wainer IW, Ruegg U, Seiler M, Mayer P (1985) High yield-purification of a urinary Na+-pump inhibitor. Biochem Biophys Res Commun 131:1234–1240PubMedCrossRefGoogle Scholar
  15. 15.
    Dey K, Chakraborti T, Roy S, Ghosh B, Kar P, Chakraborti S (2010) Identification, purification and partial characterization of a 70 kDa inhibitor protein of Na+/K+-ATPase from cytosol of pulmonary artery smooth muscle. Life Sci 86:473–481PubMedCrossRefGoogle Scholar
  16. 16.
    Towbin H, Staehelint T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Chakraborti T, Ghosh SK, Michael JR, Chakraborti S (1996) Role of approtinin sensitive protease in the activation of Ca2+-ATPase by superoxide radical in microsomes of pulmonary vascular smooth muscle. Biochem J 317:885–890PubMedCentralPubMedGoogle Scholar
  18. 18.
    Mandal M, Mandal A, Das S, Chakraborti T, Chakraborti S (2003) Identification, purification and partial characterization of tissue inhibitor of matrix metalloproteinase-2 in bovine pulmonary artery smooth muscle. Mol Cell Biochem 254:275–287PubMedCrossRefGoogle Scholar
  19. 19.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  20. 20.
    Chakraborti T, Das S, Chakraborti S (2005) Proteolytic activation of protein kinase C alpha by peroxynitrite in stimulating cytosolic phospholipase A2 in pulmonary endothelium: involvement of a pertussis toxin sensitive protein. Biochemistry 44:5246–5257PubMedCrossRefGoogle Scholar
  21. 21.
    Ghosh B, Chakraborti T, Kar P, Dey K, Chakraborti S (2009) Solubilization, purification, andreconstitution of alpha 2 beta 1 isozyme of Na+/K+-ATPase from caveolae of pulmonary smooth muscle plasma membrane: comparative studies with DHPC, C12E8, and Triton X-100. Mol Cell Biochem 323:169–184PubMedCrossRefGoogle Scholar
  22. 22.
    Robinson JD (1967) Kinetic studies on a brain microsomal adenosine triphosphatase. Evidence suggesting conformational changes. Biochemistry 6:3250–3258PubMedCrossRefGoogle Scholar
  23. 23.
    Fiske CH, Subbaraw Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400Google Scholar
  24. 24.
    Post RL, Sen AK (1967) 32P-labeling of a (Na+/K+)-ATPase intermediate. Meth Enzymol 10:773–776CrossRefGoogle Scholar
  25. 25.
    Santos HL, Lamas RP, Ciancaglini P (2002) Solubilization of Na+/K+-ATPase from rabbit kidney outer medulla using only C12E8. Braz J Med Biol Res 35:277–288PubMedCrossRefGoogle Scholar
  26. 26.
    Hamer E, Schoner W (1993) Modification of the E1ATP binding site of Na+/K+-ATPase by the chromium complex of adenosine 5′-[β, γ-methylene]triphosphate blocks the overall reaction but not the partial activities of the E2 conformation. Eur J Biochem 213:743–748PubMedCrossRefGoogle Scholar
  27. 27.
    Mandal A, Das S, Chakraborti T, Kar P, Ghosh B, Chakraborti S (2006) Solubilization, purification and reconstitution of Ca2+-ATPase from bovine pulmonary artery smooth muscle microsomes by different detergents: preservation of native structure and function of the enzyme by DHPC. Biochim Biophys Acta 760:20–31CrossRefGoogle Scholar
  28. 28.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  29. 29.
    Daniel WW (1978) Biostatistics: a foundation for analysis in the health sciences (estimation). Wiley, New York, pp 121–157Google Scholar
  30. 30.
    Juan G, Traganos F, Darzynkiewicz Z (1999) Histone H3 phosphorylation in human monocytes and during HL-60 cell differentiation. Expt Cell Res 246:212–220CrossRefGoogle Scholar
  31. 31.
    Garcia M, Bondada V, Geddes JW (2005) Mitochondrial localization of μ calpain. Biochem Biophys Res Commun 338:1241–1247PubMedCrossRefGoogle Scholar
  32. 32.
    Eskelinen EL (2006) Role of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27:495–502PubMedCrossRefGoogle Scholar
  33. 33.
    Hood JL, Brooks WH, Roszman TL (2004) Differential compartmentalization of the calpain/calpastatin network with the endoplasmic reticulum and golgi apparatus. J Biol Chem 279:43126–43135PubMedCrossRefGoogle Scholar
  34. 34.
    Hood JL, Logan BB, Sinai AP, Brooks WH, Roszman TL (2003) Association of the calpain/calpastatin network with subcellular organelles. Biochem Biophys Res Commun 310:1200–1212PubMedCrossRefGoogle Scholar
  35. 35.
    Baer HP, Vriend RA (1985) Cytosolic enzyme leakage from isolated smooth muscle preparations. Can J Physiol Pharmacol 63:164–165PubMedCrossRefGoogle Scholar
  36. 36.
    Rogaeva EA, Perova NV, Alexandrov AA, Oganov RG, Lopina OD, Boldyrev AA (1987) Is there a relation between the presence in the serum of patients with arterial hypertension of a protein component with molecular weight of 15 kDa and the inhibitory effect of the serum on Na+/K+-ATPase? Vopr Med Khim 33:34–39PubMedGoogle Scholar
  37. 37.
    Glynn IM (1985) In: Martonosi AN (ed) The enzymes of biological membranes, 2nd edn, vol 3. Plenum Publisher, New York, pp 35–11Google Scholar
  38. 38.
    Santos H, Ciancaglini P (2003) Kinetic characterization of Na+/K+-ATPase from rabbit outer renal medulla: properties of the (αβ)2 dimer. Comp Biochem Physiol B: Biochem Mol Biol 135:539–549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sayed Modinur Rahaman
    • 1
  • Kuntal Dey
    • 1
  • Partha Das
    • 1
  • Soumitra Roy
    • 1
  • Tapati Chakraborti
    • 1
  • Sajal Chakraborti
    • 1
  1. 1.Department of Molecular Medicine and the Department of Biochemistry & BiophysicsUniversity of KalyaniKalyaniIndia

Personalised recommendations