Molecular and Cellular Biochemistry

, Volume 393, Issue 1–2, pp 69–76 | Cite as

Manganese superoxide dismutase knock-down in 3T3-L1 preadipocytes impairs subsequent adipogenesis

  • Sabrina Krautbauer
  • Kristina Eisinger
  • Yvonne Hader
  • Markus Neumeier
  • Christa Buechler


Adipogenesis is associated with the upregulation of the antioxidative enzyme manganese superoxide dismutase (MnSOD) suggesting a vital function of this enzyme in adipocyte maturation. In the current work, MnSOD was knocked-down with small-interference RNA in preadipocytes to study its role in adipocyte differentiation. In mature adipocytes differentiated from these cells, proteins characteristic for mature adipocytes, which are strongly induced in late adipogenesis like adiponectin and fatty acid-binding protein 4, are markedly reduced. Triglycerides begin to accumulate after about 6 days of the induction of adipogenesis, and are strongly diminished in cells with low MnSOD. Proteins upregulated early during differentiation, like fatty acid synthase and cytochrome C oxidase-4, are not altered. Cell viability, insulin-mediated phosphorylation of Akt, antioxidative capacity (AOC), superoxide levels, and heme oxygenase 1 with the latter being induced upon oxidative stress are not affected. L-Buthionine-(S,R)-sulfoximine (BSO) depletes glutathione and modestly lowers AOC of mature adipocytes. Addition of BSO to 3T3-L1 cells 3 days after the initiation of differentiation impairs triglyceride accumulation and expression of proteins induced in late adipogenesis. Of note, proteins that increased early during adipogenesis are also diminished, suggesting that BSO causes de-differentiation of these cells. Preadipocyte proliferation is not considerably affected by low MnSOD and BSO. These data suggest that glutathione and MnSOD are essential for adipogenesis.


Adipocyte Glutathione Antioxidants Triglycerides 


Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.


  1. 1.
    Lazar MA (2005) How obesity causes diabetes: not a tall tale. Science 307:373–375. doi: 10.1126/science.1104342 PubMedCrossRefGoogle Scholar
  2. 2.
    Van Gaal LF, Mertens IL, Abrams PJ (2003) Health risks of lipodystrophy and abdominal fat accumulation: therapeutic possibilities with leptin and human growth hormone. Growth Horm IGF Res 13 Suppl A:S4-9. doi:  10.1016/S1096-6374(03)00046-7
  3. 3.
    Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF (2010) Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol 25:807–815PubMedGoogle Scholar
  4. 4.
    Tang QQ, Lane MD (2012) Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem 81:715–736. doi: 10.1146/annurev-biochem-052110-115718 PubMedCrossRefGoogle Scholar
  5. 5.
    Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787. doi: 10.1038/nature06902 PubMedCrossRefGoogle Scholar
  6. 6.
    Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121:2094–2101. doi: 10.1172/JCI45887 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344. doi: 10.1038/nm.3324 PubMedCrossRefGoogle Scholar
  8. 8.
    Kojima T, Norose T, Tsuchiya K, Sakamoto K (2010) Mouse 3T3-L1 cells acquire resistance against oxidative stress as the adipocytes differentiate via the transcription factor FoxO. Apoptosis 15:83–93. doi: 10.1007/s10495-009-0415-x PubMedCrossRefGoogle Scholar
  9. 9.
    Drose S, Brandt U (2012) Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 748:145–169. doi: 10.1007/978-1-4614-3573-0_6 PubMedCrossRefGoogle Scholar
  10. 10.
    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349. doi: 10.1016/s0891-5849(02)00905-x PubMedCrossRefGoogle Scholar
  11. 11.
    Ducluzeau PH, Priou M, Weitheimer M, Flamment M, Duluc L, Iacobazi F, Soleti R, Simard G, Durand A, Rieusset J, Andriantsitohaina R, Malthiery Y (2011) Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. J Physiol Biochem 67:285–296. doi: 10.1007/s13105-011-0074-6 PubMedCrossRefGoogle Scholar
  12. 12.
    Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, Stocker R, Van Remmen H, Kraegen EW, Cooney GJ, Richardson AR, James DE (2009) Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 106:17787–17792. doi: 10.1073/pnas.0902380106 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381. doi: 10.1038/ng1295-376 PubMedCrossRefGoogle Scholar
  14. 14.
    Lechpammer S, Epperly MW, Zhou S, Nie S, Glowacki J, Greenberger JS (2005) Adipocyte differentiation in Sod2(−/−) and Sod2(+/+) murine bone marrow stromal cells is associated with low antioxidant pools. Exp Hematol 33:1201–1208. doi: 10.1016/j.exphem.2005.06.026 PubMedCrossRefGoogle Scholar
  15. 15.
    Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 93:9782–9787PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Vigilanza P, Aquilano K, Baldelli S, Rotilio G, Ciriolo MR (2011) Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. J Cell Physiol 226:2016–2024. doi: 10.1002/jcp.22542 PubMedCrossRefGoogle Scholar
  17. 17.
    Findeisen HM, Pearson KJ, Gizard F, Zhao Y, Qing H, Jones KL, Cohn D, Heywood EB, de Cabo R, Bruemmer D (2011) Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS ONE 6:e18532. doi: 10.1371/journal.pone.0018532 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Carriere A, Carmona MC, Fernandez Y, Rigoulet M, Wenger RH, Penicaud L, Casteilla L (2004) Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 279:40462–40469. doi: 10.1074/jbc.M407258200 PubMedCrossRefGoogle Scholar
  19. 19.
    Ryter SW, Choi AM (2009) Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol 41:251–260. doi: 10.1165/rcmb.2009-0170TR PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Weigert J, Neumeier M, Bauer S, Mages W, Schnitzbauer AA, Obed A, Groschl B, Hartmann A, Schaffler A, Aslanidis C, Scholmerich J, Buechler C (2008) Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett 582:2965–2972. doi: 10.1016/j.febslet.2008.07.034 PubMedCrossRefGoogle Scholar
  21. 21.
    Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, Hellerbrand C, Zimara N, Schaffler A, Aslanidis C, Buechler C (2011) Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 152:26–35. doi: 10.1210/en.2010-1157 PubMedCrossRefGoogle Scholar
  22. 22.
    Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312. doi: 10.1146/annurev.biochem.77.061307.091829 PubMedCrossRefGoogle Scholar
  23. 23.
    Krautbauer S, Eisinger K, Neumeier M, Hader Y, Buettner R, Schmid PM, Aslanidis C, Buechler C (2014) Free fatty acids, lipopolysaccharide and IL-1alpha induce adipocyte manganese superoxide dismutase which is increased in visceral adipose tissues of obese rodents. PLoS ONE 9:e86866. doi: 10.1371/journal.pone.0086866 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Behrend L, Mohr A, Dick T, Zwacka RM (2005) Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol 25:7758–7769. doi: 10.1128/MCB.25.17.7758-7769.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Chen H, Li X, Epstein PN (2005) MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity. Diabetes 54:1437–1446. doi: 10.2337/diabetes.54.5.1437 PubMedCrossRefGoogle Scholar
  26. 26.
    Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040–1052. doi: 10.1038/cdd.2009.49 PubMedCrossRefGoogle Scholar
  27. 27.
    Hosoki A, Yonekura S, Zhao QL, Wei ZL, Takasaki I, Tabuchi Y, Wang LL, Hasuike S, Nomura T, Tachibana A, Hashiguchi K, Yonei S, Kondo T, Zhang-Akiyama QM (2012) Mitochondria-targeted superoxide dismutase (SOD2) regulates radiation resistance and radiation stress response in HeLa cells. J Radiat Res 53:58–71. doi: 10.1269/jrr.11034 PubMedCrossRefGoogle Scholar
  28. 28.
    Larosche I, Letteron P, Berson A, Fromenty B, Huang TT, Moreau R, Pessayre D, Mansouri A (2010) Hepatic mitochondrial DNA depletion after an alcohol binge in mice: probable role of peroxynitrite and modulation by manganese superoxide dismutase. J Pharmacol Exp Ther 332:886–897. doi: 10.1124/jpet.109.160879 PubMedCrossRefGoogle Scholar
  29. 29.
    Lee OH, Kwon YI, Apostolidis E, Shetty K, Kim YC (2011) Rhodiola-induced inhibition of adipogenesis involves antioxidant enzyme response associated with pentose phosphate pathway. Phytother Res 25:106–115. doi: 10.1002/ptr.3236 PubMedCrossRefGoogle Scholar
  30. 30.
    Torres-Ramirez N, Baiza-Gutman LA, Garcia-Macedo R, Ortega-Camarillo C, Contreras-Ramos A, Medina-Navarro R, Cruz M, Ibanez-Hernandez MA, Diaz-Flores M (2013) Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells. Life Sci 93:975–985. doi: 10.1016/j.lfs.2013.10.023 PubMedCrossRefGoogle Scholar
  31. 31.
    Allen RG, Balin AK (2003) Effects of oxygen on the antioxidant responses of normal and transformed cells. Exp Cell Res 289:307–316. doi: 10.1016/S0014-4827(03)00279-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Wan XS, St Clair DK (1993) Thiol-modulating agents increase manganese superoxide dismutase activity in human lung fibroblasts. Arch Biochem Biophys 304:89–93. doi: 10.1006/abbi.1993.1325 PubMedCrossRefGoogle Scholar
  33. 33.
    Higuchi M, Dusting G, Peshavariya H, Jiang F, Hsiao ST, Chan E, Liu GS (2012) Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev. doi: 10.1089/scd.2012.0306 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Kanda Y, Hinata T, Kang SW, Watanabe Y (2011) Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 89:250–258. doi: 10.1016/j.lfs.2011.06.007 PubMedCrossRefGoogle Scholar
  35. 35.
    Lee H, Lee YJ, Choi H, Ko EH, Kim JW (2009) Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284:10601–10609. doi: 10.1074/jbc.M808742200 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Tang QQ, Lane MD (1999) Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev 13:2231–2241. doi: 10.1101/gad.13.17.2231 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Markovic J, Mora NJ, Broseta AM, Gimeno A, de-la-Concepcion N, Vina J, Pallardo FV (2009) The depletion of nuclear glutathione impairs cell proliferation in 3t3 fibroblasts. PLoS One 4:e6413. doi:  10.1371/journal.pone.0006413

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sabrina Krautbauer
    • 1
  • Kristina Eisinger
    • 1
  • Yvonne Hader
    • 1
  • Markus Neumeier
    • 1
  • Christa Buechler
    • 1
  1. 1.Department of Internal Medicine IUniversity Hospital of RegensburgRegensburgGermany

Personalised recommendations