Advertisement

Molecular and Cellular Biochemistry

, Volume 391, Issue 1–2, pp 241–250 | Cite as

Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion

  • O. I. Pisarenko
  • V. Z. Lankin
  • G. G. Konovalova
  • L. I. Serebryakova
  • V. S. Shulzhenko
  • A. A. Timoshin
  • O. V. Tskitishvili
  • Yu. A. Pelogeykina
  • I. M. Studneva
Article

Abstract

This study investigated the effects of peptide apelin-12 (H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH, A12) and its novel structural analog (H-(NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, AI) on myocardial antioxidant enzyme activities, lipid peroxidation, and reactive oxygen species formation in ex vivo and in vivo models of myocardial ischemia/reperfusion (I/R) injury. Isolated working rat hearts were subjected to global ischemia and reperfusion. Infusion of 140 μM A12 or AI before global ischemia improved cardiac function recovery; increased the activity of Cu,Zn superoxide dismutase (Cu,Zn SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); decreased malondialdehyde (MDA) content in reperfused heart; and reduced the formation of hydroxyl radical adduct of the spin trap 5,5-dimethyl-1-pyrroline-N-oxide in the myocardial effluent during early reperfusion compared with these indices in control. Anesthetized open-chest rats were subjected to the left anterior descending coronary artery occlusion and coronary reperfusion. Peptide A12 or its analog AI was injected intravenously at the onset of reperfusion at a dose of 0.35 μmol/kg. Treatment with A12 or AI significantly limited infarct size and reduced the activity of lactate dehydrogenase and creatine kinase MB isoenzyme in blood plasma at the end of reperfusion compared with control. These effects were accompanied by complete recovery of Cu,Zn SOD, CAT, and GSH-Px activities; and decrease in MDA content in the area at risk by the end of reperfusion. The study concluded that C-terminal fragment of native peptide apelin-12 and its synthesized analog is involved in the upregulation of cardiac antioxidant defense systems and attenuation of lipid peroxidation in myocardial I/R injury.

Keywords

Apelin-12 Its structural analog Antioxidant defense Myocardial ischemia/reperfusion injury Rat heart 

Notes

Acknowledgments

This study was supported by a grant from The Russian Foundation for Basic Research No. 11-04-00078a. The authors are grateful to Dr. M.V. Sidorova for synthesis of the peptides and discussion of the results.

References

  1. 1.
    Ferdinandy P, Schulz R, Baxter G (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 9:418–458CrossRefGoogle Scholar
  2. 2.
    Kleinz MJ, Davenport AP (2005) Emerging roles of apelin in biology and medicine. Pharmacol Therap 107:198–211CrossRefGoogle Scholar
  3. 3.
    Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74:34–41CrossRefPubMedGoogle Scholar
  4. 4.
    Kunduzova O, Alet N, Delesque-Touchard N, Millet L, Castan-Laurell I, Muller C et al (2008) Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes. FASEB J 22:4146–4153CrossRefPubMedGoogle Scholar
  5. 5.
    Japp AG, Cruden NL, Amer DA, Li VK, Goudie EB, Johnston NR et al (2008) Vascular effects of apelin in vivo in man. J Am Coll Cardiol 52:908–913CrossRefPubMedGoogle Scholar
  6. 6.
    Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H et al (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91:434–440CrossRefPubMedGoogle Scholar
  7. 7.
    Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CC (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Bas Res Cardiol 102:518–528CrossRefGoogle Scholar
  8. 8.
    Pitkin SL, Maguire JJ, Bonner TI, Davenport AP (2010) International union of basic and clinical pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol Rev 62:331–342CrossRefPubMedGoogle Scholar
  9. 9.
    Lee DK, George SR, O’Dowd BF (2006) Unravelling the roles of the apelin system: prospective therapeutic applications in heart failure and obesity. Trends Pharmacol Sci 27:190–194CrossRefPubMedGoogle Scholar
  10. 10.
    Japp AG, Newby DE (2008) The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol 75:1882–1892CrossRefPubMedGoogle Scholar
  11. 11.
    Jia YX, Lu ZF, Zhang J, Pan CS, Yang JH, Zhao J, Yu F, Duan XH, Tang CS, Qi YF (2007) Apelin activates l-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Peptides 28:2023–2029CrossRefPubMedGoogle Scholar
  12. 12.
    Dai T, Ramirez-Correa G, Gao WD (2006) Apelin increases contractility in failing cardiac muscle. Eur J Pharmacol 553:222–228PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Zou MX, Liu HY, Haraguchi Y, Soda Y, Tatemoto K, Hoshino H (2000) Apelin peptides block the entry of human immunodeficiency virus (HIV). FEBS Lett 473:15–18CrossRefPubMedGoogle Scholar
  14. 14.
    Cayabyab M, Hinuma S, Farzan M, Choe H, Fukusumi S, Kitada C, Nishizawa N, Hosoya M, Nishimura O, Messele T, Pollakis G, Goudsmit J, Fujino M, Sodroski J (2000) Apelin, the natural ligand of the orphan seven-transmembrane receptor APJ, inhibits human immunodeficiency virus type 1 entry. J Virol 4:11972–11976CrossRefGoogle Scholar
  15. 15.
    Pisarenko OI, Shulzhenko VS, Pelogeykina YuA, Studneva IM, Khatri DN (2010) Apelin-12 improves metabolic and functional recovery of rat heart after global ischemia. Health 2:927–934CrossRefGoogle Scholar
  16. 16.
    Pisarenko OI, Serebryakova LI, Studneva IM, Pelogeykina YuA, Tskitishvili OV, Bespalova ZhD, Sidorova MV, Az’muko AA, Khatri DN, Pal’keeva ME, Molokoedov AS (2013) Effects of structural analogues of apelin 12 in acute myocardial infarction in rats. J Pharmacol Pharmacother 4:198–203PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Weir RA, Chong KS, Dalzell JR, Petrie CJ, Murphy CA, Steedman T et al (2009) Plasma apelin concentration is depressed following acute myocardial infarction in man. Eur J Heart Fail 11:551–558CrossRefPubMedGoogle Scholar
  18. 18.
    Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J, Adamson J et al (2010) Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation 121:1818–1827CrossRefPubMedGoogle Scholar
  19. 19.
    Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J et al (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843CrossRefPubMedGoogle Scholar
  20. 20.
    Pisarenko OI, Shulzhenko VS, Pelogeykina YuA, Studneva IM (2012) Attenuation of myocardial ischemia and reperfusion injury by novel analogues of apelin-12. Int J Pharmaceut Biomed Res 3:16–21Google Scholar
  21. 21.
    Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, Losano G et al (2011) Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 300:H2308–H2315CrossRefPubMedGoogle Scholar
  22. 22.
    Pisarenko OI, Pelogeykina YA, Shulzhenko VS, Studneva IM (2012) Nitric oxide synthase mediates the apelin-induced improvement of myocardial postischemic metabolic and functional recovery. Open J Mol Integ Physiol 2:1–7CrossRefGoogle Scholar
  23. 23.
    Zeng XJ, Zhang LK, Wang HX et al (2009) Apelin protects heart against ischemia/reperfusion injury in rat. Peptides 30:1144–1152CrossRefPubMedGoogle Scholar
  24. 24.
    Jia YX, Pan CS, Zhang J et al (2006) Apelin protects myocardial injury induced by isoproterenol in rats. Regul Pept 133:147–154CrossRefPubMedGoogle Scholar
  25. 25.
    Foussal C, Lairez O, Calise D et al (2010) Activation of catalase by apelin prevents oxidative stress-linked cardiac hypertrophy. FEBS Lett 584:2363–2370CrossRefPubMedGoogle Scholar
  26. 26.
    Tosaki A, Blasig IE, Pali T, Ebert B (1990) Heart protection and radical trapping by DMPO during reperfusion in isolated working rat hearts. Free Radic Biol Med 8:363–372CrossRefPubMedGoogle Scholar
  27. 27.
    Lowry OH, Rosebrough NJ, Farr AI, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  28. 28.
    Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analyt Biochem 44:276–287CrossRefPubMedGoogle Scholar
  29. 29.
    Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 95:133–140Google Scholar
  30. 30.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte peroxidase. J Lab Clin Med 2:158–169Google Scholar
  31. 31.
    Lankin VZ, Konovalova GG, Tikhaze AK, Nedosugova LV (2012) The effect of natural dicarbonyls on activity of antioxidant enzymes in vitro and in vivo. Biomed Chem 6:81–86Google Scholar
  32. 32.
    Kappusamy P, Zwier JL (1989) Characterization of free-radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem 264:9880–9884Google Scholar
  33. 33.
    Murphy E, Steenbergen Ch (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res 47:446–456CrossRefPubMedGoogle Scholar
  35. 35.
    Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415CrossRefPubMedGoogle Scholar
  36. 36.
    Rohilla A, Kushnoor N, Kushnoor A (2012) Myocardial ischemia reperfusion injury-pathogenesis and prevention. Int J Res Pharmaceut Biomed Sci 3:929–934Google Scholar
  37. 37.
    Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90:9813–9817PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    O’Donnell VB, Chumley PH, Hogg N, Bloodsworth A, Darley-Usmar VM, Freeman BA (1997) Nitric oxide inhibition of lipid peroxidation: kinetics of reaction with lipid peroxyl radicals and comparison with alpha tocopherol. Biochemistry 36:15216–15223CrossRefPubMedGoogle Scholar
  39. 39.
    Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease from marvel to menace. Circulation 113:1708–1714CrossRefPubMedGoogle Scholar
  40. 40.
    Frank S, Zacharowski K, Wray GM, Thiemermann CH, Pfeilschifter J (1999) Identification of copper/zinc superoxide dismutase as a novel nitric oxide-regulated gene in rat glomerular mesangial cells and kidneys of endotoxemic rats. FASEB J 13:869–882PubMedGoogle Scholar
  41. 41.
    Husain K, Hazelrigg SR (2002) Oxidative injury due to chronic nitric oxide synthase inhibition in rat: effect of regular exercise on the heart. Biochim Biophys Acta 1587:75–82CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • O. I. Pisarenko
    • 1
  • V. Z. Lankin
    • 1
  • G. G. Konovalova
    • 1
  • L. I. Serebryakova
    • 1
  • V. S. Shulzhenko
    • 1
  • A. A. Timoshin
    • 1
  • O. V. Tskitishvili
    • 1
  • Yu. A. Pelogeykina
    • 1
  • I. M. Studneva
    • 1
  1. 1.Laboratory for Myocardial MetabolismRussian Cardiology Research-and-Production ComplexMoscowRussian Federation

Personalised recommendations