Skip to main content
Log in

In vivo antioxidative and neuroprotective effect of 4-Allyl-2-methoxyphenol against chlorpyrifos-induced neurotoxicity in rat brain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chlorpyrifos exposure leads to various neurological disorders adverting disturbance in molecular pathways and normal brain functions. Major complications arise when these potent nerve agents access neuronal mechanisms causing adverse effect on acetylcholinesterase and brain lipids with generation of reactive oxygen species. Chlorpyrifos elicits chronic intoxication leading to redox disturbance with irreversible brain damage and oxidative stress. In the present study, neuroprotective and anti-apoptotic effects of eugenol (EO), a phenolic antioxidant, against chlorpyrifos-induced neurotoxicity was explored on rat brain cortex. Rats treated orally with chlorpyrifos [89.4 mg/kg body weight (BW)] for 15 consecutive days showed changes in brain lipid profile, increased levels of lipid peroxidation, inhibition of acetylcholinesterase activity, and changes in antioxidant enzymes. EO (250 mg/kg BW), administered 1 h after chlorpyrifos treatment, restored lipid, acetylcholinesterase, and antioxidant enzyme levels of brain cortex by suppressing chlorpyrifos-induced oxidative stress and neurotoxicity. Histological findings further demonstrated damage to brain morphology with increased protein levels of caspase-3 in CPF-treated animals. Alterations caused by neurotoxic effects of chlorpyrifos were attenuated by EO administration with decreased protein expressions of caspase-3. Thus, through its antioxidant and anti-apoptotic activities, EO showed protective effect against chlorpyrifos-induced neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Banerjee BD, Seth V, Ahmed RS (2001) Pesticide-induced oxidative stress: perspectives and trends. Rev Environ Health 16(1):1–40

    Article  CAS  PubMed  Google Scholar 

  2. Li AA, Lowe KA, McIntosh LJ, Mink PJ (2012) Evaluation of epidemiology and animal data for risk assessment: chlorpyrifos developmental neurobehavioral outcomes. J Toxicol Environ Health B Crit Rev 15(2):109–184. doi:10.1080/10937404.2012.645142

    Article  PubMed Central  PubMed  Google Scholar 

  3. Amitai G, Moorad D, Adani R, Doctor BP (1998) Inhibition of acetylcholinesterase and butyrylcholinesterase by chlorpyrifos-oxon. Biochem Pharmacol 56(3):293–299

    Article  CAS  PubMed  Google Scholar 

  4. Qiao D, Seidler FJ, Padilla S, Slotkin TA (2002) Developmental neurotoxicity of chlorpyrifos: what is the vulnerable period? Environ Health Perspect 110(11):1097–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Meyer A, Seidler FJ, Slotkin TA (2004) Developmental effects of chlorpyrifos extend beyond neurotoxicity: critical periods for immediate and delayed-onset effects on cardiac and hepatic cell signaling. Environ Health Perspect 112(2):170–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623

    Article  CAS  PubMed  Google Scholar 

  7. Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21(2):53–57

    Article  CAS  PubMed  Google Scholar 

  8. el-Sharkawy AM, Abdel-Rahman SZ, Hassan AA, Gabr MH, el-Zoghby SM, el-Sewedy SM (1994) Biochemical effects of some insecticides on the metabolic enzymes regulating glutathione metabolism. Bull Environ Contam Toxicol 52(4):505–510

    Article  CAS  PubMed  Google Scholar 

  9. Shadnia S, Azizi E, Hosseini R, Khoei S, Fouladdel S, Pajoumand A, Jalali N, Abdollahi M (2005) Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Hum Exp Toxicol 24(9):439–445

    Article  CAS  PubMed  Google Scholar 

  10. Rahman MF, Mahboob M, Danadevi K, Saleha Banu B, Grover P (2002) Assessment of genotoxic effects of chloropyriphos and acephate by the comet assay in mice leucocytes. Mutat Res 516(1–2):139–147

    Article  CAS  PubMed  Google Scholar 

  11. Bagchi D, Bagchi M, Hassoun EA, Stohs SJ (1995) In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology 104(1–3):129–140

    Article  CAS  PubMed  Google Scholar 

  12. Gupta A, Gupta A, Shukla GS (1998) Effects of neonatal quinalphos exposure and subsequent withdrawal on free radical generation and antioxidative defenses in developing rat brain. J Appl Toxicol 18(1):71–77

    Article  CAS  PubMed  Google Scholar 

  13. Bebe FN, Panemangalore M (2005) Pesticides and essential minerals modify endogenous antioxidants and cytochrome P450 in tissues of rats. J Environ Sci Health B 40(5):769–784

    Article  PubMed  Google Scholar 

  14. Rana SV, Allen T, Singh R (2002) Inevitable glutathione, then and now. Indian J Exp Biol 40(6):706–716

    CAS  PubMed  Google Scholar 

  15. Verma RS, Mehta A, Srivastava N (2007) In vivo chlorpyrifos induced oxidative stress: attenuation by antioxidant vitamins. Pestic Biochem Physiol 88:191–196

    Article  CAS  Google Scholar 

  16. Yeh HF, Luo CY, Lin CY, Cheng SS, Hsu YR, Chang ST (2013) Methods for thermal stability enhancement of leaf essential oils and their main constituents from indigenous cinnamon (Cinnamomum osmophloeum). J Agric Food Chem 61(26):6293–6298. doi:10.1021/jf401536y

    Article  CAS  PubMed  Google Scholar 

  17. Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134(1):7–11. doi:10.1016/j.exppara.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  18. Prasad SN, Muralidhara (2013) Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: behavioral and biochemical evidence. Neurochem Res 38(2):330–345. doi:10.1007/s11064-012-0924-9

    Article  CAS  PubMed  Google Scholar 

  19. Prasad SN, Muralidhara (2012) Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster- its amelioration with spice active enrichment: relevance to neuropathy. Neurotoxicology 33(5):1254–1264. doi:10.1016/j.neuro.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  20. Yoshimura M, Amakura Y, Yoshida T (2011) Polyphenolic compounds in clove and pimento and their antioxidative activities. Biosci Biotechnol Biochem 75(11):2207–2212

    Article  CAS  PubMed  Google Scholar 

  21. Nam H, Kim MM (2013) Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem Toxicol 55:106–112. doi:10.1016/j.fct.2012.12.050

    Article  CAS  PubMed  Google Scholar 

  22. Luo JH, Hou L, Gai XB (2011) Test for toxicity of methyl-ethyl Chlopryrifos. Guangdong Agric Sci 2:89–91

    Google Scholar 

  23. Apgar JM, Juarranz A, Espada J, Villanueva A, Cañete M, Stockert JC (1998) Fluorescence microscopy of rat embryo sections stained with haematoxylin-eosin and Masson’s trichrome method. J Microsc 191(Pt 1):20–27

    CAS  PubMed  Google Scholar 

  24. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  25. Frings CS, Dunn RT (1970) A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. Am J Clin Pathol 53(1):89–91

    CAS  PubMed  Google Scholar 

  26. Bartlett GR (1959) Phospholipid assay in column chromatography. J Biol Chem 234(3):466–468

    CAS  PubMed  Google Scholar 

  27. Marinetti GV (1962) Hydrolysis of lecithin with sodium methoxide. Biochemistry 1:350–353

    Article  CAS  PubMed  Google Scholar 

  28. Zlatkis A, Zak B, Boyle AJ (1953) A new method for the direct determination of serum cholesterol. J Lab Clin Med 41(3):486–492

    CAS  PubMed  Google Scholar 

  29. Dubois M, Gilles KA, Hamilton JK, Rebbers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  30. Whittaker M (1984) Cholinesterases. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 4th edn. Verlag Chemie, Weinheim, pp 52–74

    Google Scholar 

  31. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540

    Article  CAS  PubMed  Google Scholar 

  32. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186(1):189–195

    Article  CAS  PubMed  Google Scholar 

  33. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  34. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  Google Scholar 

  35. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  PubMed  Google Scholar 

  36. Warholm M, Guthenberg C, von Bahr C, Mannervik B (1985) Glutathione transferases from human liver. Methods Enzymol 113:499–504

    Article  CAS  PubMed  Google Scholar 

  37. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  38. Strosznajder J, Strosznajder RP (1996) ATP a potent regulator of inositol phospholipids-phospholipase C and lipid mediators in brain cortex. Acta Neurobiol Exp (Wars) 56(2):527–534

    CAS  Google Scholar 

  39. Saher G, Simons M (2010) Cholesterol and myelin biogenesis. Subcell Biochem 51:489–508. doi:10.1007/978-90-481-8622-8_18

    Article  CAS  PubMed  Google Scholar 

  40. Jeitner TM, Voloshyna I, Reiss AB (2011) Oxysterol derivatives of cholesterol in neurodegenerative disorders. Curr Med Chem 18(10):1515–1525

    Article  CAS  PubMed  Google Scholar 

  41. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5(6):746–755. doi:10.1242/dmm.010124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Marcus J, Popko B (2002) Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta 1573(3):406–413

    Article  CAS  PubMed  Google Scholar 

  43. Pinchuk I, Shoval H, Dotan Y, Lichtenberg D (2012) Evaluation of antioxidants: scope, limitations and relevance of assays. Chem Phys Lipids 165(6):638–647. doi:10.1016/j.chemphyslip.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  44. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623 Review. Erratum in: J Neurochem (2012) 120(5):850

    Article  CAS  PubMed  Google Scholar 

  45. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303. doi:10.1016/j.bbagen.2012.11.020

    Article  PubMed  Google Scholar 

  46. Margaill I, Plotkine M, Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Radic Biol Med 39:429–443

    Article  CAS  Google Scholar 

  47. Schreibelt G, van Horssen J, van Rossum S, Dijkstra CD, Drukarch B, de Vries HE (2007) Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res Rev 56:322–330

    Article  CAS  PubMed  Google Scholar 

  48. Li AA, Lowe KA, McIntosh LJ, Mink PJ (2012) Evaluation of epidemiology and animal data for risk assessment: chlorpyrifos developmental neurobehavioral outcomes. J Toxicol Environ Health B Crit Rev 15(2):109–184. doi:10.1080/10937404.2012.645142

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kennedy GL Jr (1986) Chronic toxicity, reproductive, and teratogenic studies with oxamyl. Fundam Appl Toxicol 7(1):106–118

    Article  CAS  PubMed  Google Scholar 

  50. Schmuck G, Mihail F (2004) Effects of the carbamates fenoxycarb, propamocarb and propoxur on energy supply, glucose utilization and SH-groups in neurons. Arch Toxicol 78(6):330–337

    Article  CAS  PubMed  Google Scholar 

  51. Mnafgui K, Kaanich F, Derbali A, Hamden K, Derbali F, Slama S, Allouche N (2013) Elfeki A (2013) Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats. Arch Physiol Biochem. doi:10.3109/13813455.822521

    PubMed  Google Scholar 

  52. Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and lipidomics in brain injury and diseases. AAPS J 8(2):E314–E321

    PubMed  Google Scholar 

  53. Ikonen E (2006) Mechanisms for cellular cholesterol transport: defects and human disease. Physiol Rev 86(4):1237–1261

    Article  CAS  PubMed  Google Scholar 

  54. Vadhva P, Hasan M (1986) Organophosphate dichlorvos induced dose-related differential alterations in lipid levels and lipid peroxidation in various regions of the fish brain and spinal cord. J Environ Sci Health B 21(5):413–424

    Article  CAS  PubMed  Google Scholar 

  55. Drevenkar V, Vasilić Z, Stengl B, Fröbe Z, Rumenjak V (1993) Chlorpyrifos metabolites in serum and urine of poisoned persons. Chem Biol Interact 87(1–3):315–322

    Article  CAS  PubMed  Google Scholar 

  56. Poet TS, Wu H, Kousba AA, Timchalk C (2003) In vitro rat hepatic and intestinal metabolism of the organophosphate pesticides chlorpyrifos and diazinon. Toxicol Sci 72(2):193–200

    Article  CAS  PubMed  Google Scholar 

  57. Kaur P, Radotra B, Minz RW, Gill KD (2007) Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicology 28(6):1208–1219

    Article  CAS  PubMed  Google Scholar 

  58. Ranjbar A, Solhi H, Mashayekhi FJ, Susanabdi A, Rezaie A, Abdollahi M (2005) Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ Toxicol Pharmacol 20(1):88–91. doi:10.1016/j.etap.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  59. Lukaszewicz-Hussain A (2008) Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level. Food Chem Toxicol 46(1):82–86

    Article  CAS  PubMed  Google Scholar 

  60. Vidyasagar J, Karunakar N, Reddy MS, Rajnarayana K, Surender T, Krishna DR (2004) Oxidative stress and antioxidant status in acute organophosphorus insecticide poisoning. Indian J Pharmacol 36(2):76–79

    CAS  Google Scholar 

  61. Agrawal D, Sultana P, Gupta GS (1991) Oxidative damage and changes in the glutathione redox system in erythrocytes from rats treated with hexachlorocyclohexane. Food Chem Toxicol 29(7):459–462

    Article  CAS  PubMed  Google Scholar 

  62. Köprücü SS, Yonar E, Seker E (2008) Effects of deltamethrin on antioxidant status and oxidative stress biomarkers in freshwater mussel, Unio elongatulus eucirrus. Bull Environ Contam Toxicol 81(3):253–257. doi:10.1007/s00128-008-9474-x

    Article  PubMed  Google Scholar 

  63. Yonar ME, Sakin F (2011) Ameliorative effect of lycopene on antioxidant status in Cyprinus carpio during pyrethroid deltamethrin exposure. Pestic Biochem Physiol 99:226–231

    Article  CAS  Google Scholar 

  64. Yonar ME, Mise Yonar S, Ural MS, Silici S, Düsükcan M (2012) Protective role of propolis in chlorpyrifos-induced changes in the haematological parameters and the oxidative/antioxidative status of Cyprinus carpio carpio. Food Chem Toxicol 50:2703–2708. doi:10.1016/j.fct.2012.05.032

    Article  PubMed  Google Scholar 

  65. Regoli F, Nigro M, Orlando E (1998) Lysosomal and antioxidant responses to metals in the Antarctic Scallop Adamussium colbecki. Aquat Toxicol 40:375–392

    Article  Google Scholar 

  66. Ferreira M, Moradas-Ferreira P, Reis-Henriques MA (2005) Oxidative stress biomarkers in two resident species, mullet (Mugil cephalus) and flounder (Platichthys flesus), from a polluted site in River Douro Estuary, Portugal. Aquat Toxicol 71(1):39–48

    Article  CAS  PubMed  Google Scholar 

  67. Ural MŞ (2013) Chlorpyrifos-induced changes in oxidant/antioxidant status and haematological parameters of Cyprinus carpio carpio: ameliorative effect of lycopene. Chemosphere 90(7):2059–2064. doi:10.1016/j.chemosphere.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  68. Matés JM, Sánchez-Jiménez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–D345

    Article  PubMed  Google Scholar 

  69. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    Article  CAS  PubMed  Google Scholar 

  70. Jett DA, Navoa RV (2000) In vitro and in vivo effects of chlorpyrifos on glutathione peroxidase and catalase in developing rat brain. Neurotoxicology 21(1–2):141–145

    CAS  PubMed  Google Scholar 

  71. Stara A, Machova J, Velisek J (2012) Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in early life stages of common carp (Cyprinus carpio L.). Neuro Endocrinol Lett 33(Suppl 3):130–135

    CAS  PubMed  Google Scholar 

  72. JanakiDevi V, Nagarani N, YokeshBabu M, Kumaraguru AK, Ramakritinan CM (2013) A study of proteotoxicity and genotoxicity induced by the pesticide and fungicide on marine invertebrate (Donax faba). Chemosphere 90(3):1158–1166. doi:10.1016/j.chemosphere.2012.09.024

    Article  CAS  PubMed  Google Scholar 

  73. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263(33):17205–17208

    CAS  PubMed  Google Scholar 

  74. Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C (2013) Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013:972913. doi:10.1155/2013/972913

    Article  PubMed Central  PubMed  Google Scholar 

  75. Xing H, Wang X, Sun G, Gao X, Xu S, Wang X (2012) Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinus carpio L.). Environ Toxicol Pharmacol 33(2):233–244. doi:10.1016/j.etap.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  76. Kirkland RA, Saavedra GM, Cummings BS, Franklin JL (2010) Bax regulates production of superoxide in both apoptotic and nonapoptotic neurons: role of caspases. J Neurosci 30(48):16114–16127. doi:10.1523/JNEUROSCI.2862-10.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Jaganathan SK, Supriyanto E (2012) Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 17(6):6290–6304. doi:10.3390/molecules17066290

    Article  CAS  PubMed  Google Scholar 

  78. Ma P, Wu Y, Zeng Q, Gan Y, Chen J, Ye X, Yang X (2013) Oxidative damage induced by chlorpyrifos in the hepatic and renal tissue of Kunming mice and the antioxidant role of vitamin E. Food Chem Toxicol 58:177–183. doi:10.1016/j.fct.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  79. Song X, Seidler FJ, Saleh JL, Zhang J, Padilla S, Slotkin TA (1997) Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. Toxicol Appl Pharmacol 145(1):158–174

    Article  CAS  PubMed  Google Scholar 

  80. Whitney KD, Seidler FJ, Slotkin TA (1995) Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol 134(1):53–62

    Article  CAS  PubMed  Google Scholar 

  81. Vidhya N, Devaraj SN (1999) Antioxidant effect of eugenol in rat intestine. Indian J Exp Biol 37(12):1192–1195

    CAS  PubMed  Google Scholar 

  82. Elelaimy IA, Ibrahim HA, Ghaffar FRA, Alawthan YS (2012) Evaluation of sub-chronic chlorpyrifos poisoning on immunological and biochemical changes in rats and protective effect of eugenol. JAPS 02(06):51–61. doi:10.7324/JAPS.2012.2611

    Google Scholar 

  83. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182(2):367–377

    Article  CAS  PubMed  Google Scholar 

  84. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5(4):a008656. doi:10.1101/cshperspect.a008656

    Article  PubMed  Google Scholar 

  85. Ou HC, Chou FP, Lin TM, Yang CH, Sheu WH (2006) Protective effects of eugenol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells. Food Chem Toxicol 44(9):1485–1495

    Article  CAS  PubMed  Google Scholar 

  86. Wie MB, Won MH, Lee KH, Shin JH, Lee JC, Suh HW, Song DK, Kim YH (1997) Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. Neurosci Lett 225(2):93–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Department of Science and Technology (S&T)-Fund for Improvement of S&T (DST-FIST), New Delhi, India; University Grants Commission-Special Assistance Programme (UGC-SAP), New Delhi, India for funding this work; and Department of Biochemistry, Panjab University, Chandigarh for providing all the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V., Panwar, R. In vivo antioxidative and neuroprotective effect of 4-Allyl-2-methoxyphenol against chlorpyrifos-induced neurotoxicity in rat brain. Mol Cell Biochem 388, 61–74 (2014). https://doi.org/10.1007/s11010-013-1899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1899-9

Keywords

Navigation