Molecular and Cellular Biochemistry

, Volume 385, Issue 1–2, pp 1–6 | Cite as

LAMP2 as a marker of EBV-mediated B lymphocyte transformation in the study of lysosomal storage diseases

  • A. S. Mello
  • M. P. Goldim
  • J. Mezzalira
  • C. S. Garcia
  • V. V. Daitz
  • C. D. Castilhos
  • M. S. Viegas
  • O. V. Vieira
  • J. C. Coelho


Following the degradative pathway, vesicles loaded with extracellular material, eventually, dock and fuse with lysosomes, acquiring specific membrane markers of these organelles and acid hydrolases responsible for digest their content. The lysosomal-associated membrane protein 2 (LAMP-2), the best characterized lysosomal membrane protein, is found in late stages of endosome maturation and may be used as a marker of lysosome-associated membranes. Lysosomal storage disorders (LSDs) are described by the absence or deficiency in hydrolase activity leading to substrate accumulation within lysosomal components and to the onset of several diseases. It is known that lymphocytes infected by Epstein–Barr virus (EBV) are able to form cytoplasmic vacuoles, which work as a storage compartment for lysosomal acidic hydrolases. At the present study, we validate the EBV as a transforming agent of B lymphocytes in stability studies of long-term stored samples, since the methods used to keep samples in liquid nitrogen and thaw them have all proven to be efficient in samples frozen for up to 2 years. To confirm and investigate some of the most prevalent LSDs in the South of Brazil—Pompe, Fabry and Gaucher diseases—we first measured the enzymatic activity of α-glicosidase, α-galactosidase, and β-glicosidase in those cytoplasmic-formed vacuoles and then looked to LAMP-2 immunoreactivity by employing confocal microscopy techniques.


Lymphocyte transformation Inborn errors of metabolism Epstein–Barr virus Lysosomal storage disorders Pompe disease Fabry disease Gaucher disease 



The authors are highly grateful to CAPES and CNPq for financial support and to Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.


  1. 1.
    Brooks DA (2009) The endosomal network. Int J Clin Pharmacol Ther 47:9–17Google Scholar
  2. 2.
    Severini MH, Silva CD, Sopelsa A, Coelho JC, Giugliani R (1999) High frequency of type 1 GM1 gangliosidosis in southern Brazil. Clin Genet 56:168–169CrossRefPubMedGoogle Scholar
  3. 3.
    Coelho JC, Wajner M, Burin MG, Vargas CR, Giugliani R (1997) Selective screening of 10,000 high-risk Brazilian patients for the detection of inborn errors of metabolism. Eur J Pediatr 156:650–654CrossRefPubMedGoogle Scholar
  4. 4.
    Minami R, Watanabe Y, Kudoh T, Suzuki M, Oyanagi K, Orii T, Nakao T (1978) Lysosomal acid hydrolases in established lymphoblastoid cell lines, transformed by Epstein–Barr virus, from patients with genetic lysosomal storage diseases. Hum Genet 44:79–87CrossRefGoogle Scholar
  5. 5.
    Minami R, Suzuki M, Kudoh T, Sato S, Oyanagi K (1977) Alpha-L-Iduronidase activity in established lymphoblastoid cells from patients with Hurler and Scheie syndromes transformed by Epstein–Barr virus. Tohoku J Exp Med 122:393–396CrossRefPubMedGoogle Scholar
  6. 6.
    Michelin K, Wajner A, Bock H, Fachel A, Rosenberg R, Pires RF, Pereira ML, Giugliani R, Coelho JC (2005) Biochemical properties of beta-glucosidase in leukocytes from patients and obligated heterozygotes for Gaucher disease carriers. Clin Chim Acta 362:101–109CrossRefPubMedGoogle Scholar
  7. 7.
    Negre A, Salvayre R, Maret A, Vieu C, Bes JC, Borrone C, Durand P, Douste-Blazy L (1986) Lymphoid cell lines as a model system for the study of Wolman’s disease: enzymatic, metabolic and ultrastructural investigations. J Inherit Metab Dis 9:193–201CrossRefPubMedGoogle Scholar
  8. 8.
    Tohda H, Oikawa A, Kudo T, Tachibana T (1978) A greatly simplified method of establishing B-lymphoblastoid cell lines. Cancer Res 38(10):3560–3562PubMedGoogle Scholar
  9. 9.
    Ventura M, Gibaud A, Le Pendu J, Hillaire D, Gerard G, Vitrac D, Oriol R (1988) Use of a simple method for the Epstein–Barr virus transformation of lymphocytes from members of large families of Reunion Island. Hum Hered 38:36–43CrossRefPubMedGoogle Scholar
  10. 10.
    Elliot J, Coulter-Mackie MB, Jung JH, Rodenhiser DI, Singh SM (1991) A method for transforming lymphocytes from very small blood volumes suitable for paediatric samples. Hum Genet 86(6):615–616Google Scholar
  11. 11.
    Pressman S, Rotter JI (1991) Epstein–Barr virus transformation of cryopreserved lymphocytes: prolonged experience with technique. Am J Hum Genet 49(2):467PubMedCentralPubMedGoogle Scholar
  12. 12.
    Louie LG, King MC (1991) A novel approach to establishing permanent lymphoblastoid cell lines: Epstein–Barr virus transformation of cryopreserved lymphocytes. Am J Hum Genet 48(3):637–638PubMedCentralPubMedGoogle Scholar
  13. 13.
    Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118:3091–3102CrossRefPubMedGoogle Scholar
  14. 14.
    Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY (2010) Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci 51:6030–6037CrossRefPubMedGoogle Scholar
  15. 15.
    Humphries WHT, Szymanski CJ, Payne CK (2011) Endo-lysosomal vesicles positive for Rab7 and LAMP1 are terminal vesicles for the transport of dextran. PLoS OnE 6:e26626PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Estronca LM, Silva JC, Sampaio JL, Shevchenko A, Verkade P, Vaz AD, Vaz WL, Vieira OV (2012) Molecular etiology of atherogenesis–in vitro induction of lipidosis in macrophages with a new LDL model. PLoS OnE 7(4):e34822. doi: 10.1371/journal.pone.0034822 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Peters SP, Coyle P, Glew RH (1976) Differentiation of beta-glucocerebrosidase from beta-glucosidase in human tissues using sodium taurocholate. Arch Biochem Biophys 175:569–582CrossRefPubMedGoogle Scholar
  18. 18.
    Desnick RJ, Allen KY, Desnick SJ, Raman MK, Bernlohr RW, Krivit W (1973) Fabry’s disease: enzymatic diagnosis of hemizygotes and heterozygotes. Alpha-galactosidase activities in plasma, serum, urine, and leukocytes. J Lab Clin Med 81(2):157–171PubMedGoogle Scholar
  19. 19.
    Li Y, Scott CR, Chamoles NA, Ghavami A, Pinto BM, Turecek F, Gelb MH (2004) Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 50(10):1785–1796PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  21. 21.
    Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118:3091–3102CrossRefPubMedGoogle Scholar
  22. 22.
    Neitzel H (1986) A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet 73:320–326CrossRefPubMedGoogle Scholar
  23. 23.
    Mello AS, Burin MG, Michellin K, Viapiana M, Giugliani R, Coelho JC, Bauer ME (2006) Epstein–Barr virus-induced transformation of B cells for the diagnosis of genetic metabolic disorders–enumerative conditions for cryopreservation. Cell Prolif 39:29–36CrossRefPubMedGoogle Scholar
  24. 24.
    Orth M, Bellosta S (2012) Cholesterol: its regulation and role in central nervous system disorders. Cholest 292598. doi: 10.1155/2012/292598 Google Scholar
  25. 25.
    Maret A, Salvayre R, Livni N, Icart J, Vuillaume M, Douste-Blazy L (1987) Biochemical and ultrastructural findings in Epstein–Barr virus-transformed lymphoid cell lines from type 1 Gaucher disease. Biol Cell 59:101–104CrossRefPubMedGoogle Scholar
  26. 26.
    Beratis NG, Danesino C, Hirschhorn K (1975) Detection of homozygotes and heterozygotes for metachromatic leukodystrophy in lymphoid cell lines and peripheral leukocytes. Ann Hum Genet 38:485–493CrossRefPubMedGoogle Scholar
  27. 27.
    Levade T, Maret A, Salvayre R, Livni N, Rogalle P, Douste-Blazy L (1986) Biochemical and ultrastructural studies on an Epstein–Barr virus-transformed lymphoid cell line from a Niemann-Pick disease type C patient. Biochim Biophys Acta 877:415–422CrossRefPubMedGoogle Scholar
  28. 28.
    Tremblay S, Khandjian EW (1998) Successful use of long-term frozen lymphocytes for the establishment of lymphoblastoid cell lines. Clin Biochem 31:555–556CrossRefPubMedGoogle Scholar
  29. 29.
    Neitzel H (1986) A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet 73:320–326CrossRefPubMedGoogle Scholar
  30. 30.
    de Mello AS, Mendes FB, Michelin-Tireli K, Camelier MV, Coelho JC (2011) Effect of one year of cryopreservation on the activity of lysosomal hydrolases from EBV-transformed lymphocytes. J Biomed Biotechnol 132581. doi: 10.1155/2011/132581 Google Scholar
  31. 31.
    de Mello AS, Provin F, Michelin-Tireli K, Camelier MV, Coelho JC (2010) Feasibility of using cryopreserved lymphoblastoid cells to diagnose some lysosomal storage diseases. Cell Prolif 43:164–169CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. S. Mello
    • 1
  • M. P. Goldim
    • 1
  • J. Mezzalira
    • 1
  • C. S. Garcia
    • 1
  • V. V. Daitz
    • 1
  • C. D. Castilhos
    • 1
  • M. S. Viegas
    • 2
  • O. V. Vieira
    • 2
  • J. C. Coelho
    • 1
  1. 1.Department of BiochemistryICBS-UFRGS, Federal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations