Molecular and Cellular Biochemistry

, Volume 383, Issue 1–2, pp 179–189 | Cite as

APRIL depletion induces cell cycle arrest and apoptosis through blocking TGF-β1/ERK signaling pathway in human colorectal cancer cells

  • Feng Wang
  • Lin Chen
  • Hongbin Ni
  • Guihua Wang
  • Weifeng Ding
  • Hui Cong
  • Shaoqing Ju
  • Shumei Yang
  • Huimin Wang


It is well documented that a proliferation-inducing ligand (APRIL), a newly found member of tumor necrosis factor superfamily, overexpressed in the majority of malignancies, plays a potential role in the occurrence and development of these tumors. Herein, we demonstrated that APRIL depletion by using RNA interference in human colorectal cancer (CRC) COLO 205 and SW480 cells resulted in cell proliferation inhibition and evoked cell cycle arrest in G0/G1 phase and apoptosis, coupled with decrease in CDK2, Cyclin D1, Bcl-2 expression and an increase of p21 and Bax expression. In addition, the decreased expression of transforming growth factor-β1 (TGF-β1) and p-ERK was also showed in siRNA-APRIL transfected COLO 205 and SW480 cells, whereas the protein expression levels of Smad2/3, p-Smad2/3, and ERK were not significantly changed. Taken together, our results indicate that APRIL depletion induces cell cycle arrest and apoptosis partly through blocking noncanonical TGF-β1/ERK, rather than canonical TGF-β1/Smad2/3, signaling pathway in CRC cells. Moreover, our study highlights APRIL as a potential molecular target for the therapy of CRC.


APRIL Colorectal carcinoma RNA interference Cell cycle Apoptosis TGF-β1 



This study was supported by the National Natural Science Youth Foundation of China (Grant No. 81201351); the Medical Innovation Team Project of Jiangsu Province (Grant No. LJ201133); the Sixth Talent Peaks Project of Jiangsu Province (Grant No. 2012-WSN-066); the Natural Science Foundation of Nantong University (Grant No. 12Z020, 12Z021).

Conflict of interest

The authors declare no conflicts of interest in this work.


  1. 1.
    Berg M, Soreide K (2011) Genetic and epigenetic traits as biomarkers in colorectal cancer. Int J Mol Sci 12:9426–9439PubMedCrossRefGoogle Scholar
  2. 2.
    Pritchard CC, Grady WM (2011) Colorectal cancer molecular biology moves into clinical practice. Gut 60:116–129PubMedCrossRefGoogle Scholar
  3. 3.
    Hahne M, Kataoka T, Schroter M et al (1998) APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med 188:1185–1190PubMedCrossRefGoogle Scholar
  4. 4.
    Wang F, Chen L, Ding W et al (2011) Serum APRIL, a potential tumor marker in pancreatic cancer. Clin Chem Lab Med 49:1715–1719PubMedCrossRefGoogle Scholar
  5. 5.
    Quinn J, Glassford J, Percy L et al (2011) APRIL promotes cell-cycle progression in primary multiple myeloma cells: influence of D-type cyclin group and translocation status. Blood 117:890–901PubMedCrossRefGoogle Scholar
  6. 6.
    Moreaux J, Veyrune JL, De Vos J et al (2009) APRIL is overexpressed in cancer: link with tumor progression. BMC Cancer 9:83PubMedCrossRefGoogle Scholar
  7. 7.
    Lascano V, Zabalegui LF, Cameron K et al (2012) The TNF family member APRIL promotes colorectal tumorigenesis. Cell Death Differ 19:1826–1835PubMedCrossRefGoogle Scholar
  8. 8.
    Wang G, Wang F, Ding W et al (2013) APRIL induces tumorigenesis and metastasis of colorectal cancer cells via activation of the PI3 K/Akt pathway. PLoS One 8:e55298PubMedCrossRefGoogle Scholar
  9. 9.
    Wang F, Ding W, Wang J et al (2011) Identification of microRNA-target interaction in APRIL-knockdown colorectal cancer cells. Cancer Gene Ther 18:500–509PubMedCrossRefGoogle Scholar
  10. 10.
    Xu J, Ding WF, Shao KK et al (2012) Transcription of promoter from the human APRIL gene regulated by Sp1 and NF-kB. Neoplasma 59:341–347PubMedCrossRefGoogle Scholar
  11. 11.
    Sun B, Wang H, Wang X et al (2009) A proliferation-inducing ligand: a new biomarker for non-small cell lung cancer. Exp Lung Res 35:486–500PubMedCrossRefGoogle Scholar
  12. 12.
    Mhawech-Fauceglia P, Kaya G, Sauter G et al (2006) The source of APRIL up-regulation in human solid tumor lesions. J Leukoc Biol 80:697–704PubMedCrossRefGoogle Scholar
  13. 13.
    Planelles L, Medema JP, Hahne M et al (2008) The expanding role of APRIL in cancer and immunity. Curr Mol Med 8:829–844PubMedCrossRefGoogle Scholar
  14. 14.
    Thompson JS, Bixler SA, Qian F et al (2001) BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293:2108–2111PubMedCrossRefGoogle Scholar
  15. 15.
    Hendriks J, Planelles L, de Jong-Odding J et al (2005) Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 12:637–648PubMedCrossRefGoogle Scholar
  16. 16.
    Rennert P, Schneider P, Cachero TG et al (2000) A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J Exp Med 192:1677–1684PubMedCrossRefGoogle Scholar
  17. 17.
    Kimberley FC, van Bostelen L, Cameron K et al (2009) The proteoglycan (heparan sulfate proteoglycan) binding domain of APRIL serves as a platform for ligand multimerization and cross-linking. FASEB J 23:1584–1595PubMedCrossRefGoogle Scholar
  18. 18.
    Kimberley F, Guadagnoli M, van Eenennaam H et al (2011) A proliferation-iducing ligand (APRIL): the development of antagonistic agents as potential therapeutics and deciphering the role of heparan sulphate proteoglycans (HSPGs) in APRIL Signalling. Adv Exp Med Biol 691:501–506PubMedCrossRefGoogle Scholar
  19. 19.
    Wang J, Ding W, Sun B et al (2012) Targeting of colorectal cancer growth, metastasis, and anti-apoptosis in BALB/c nude mice via APRIL siRNA. Mol Cell Biochem 363:1–10PubMedCrossRefGoogle Scholar
  20. 20.
    Wang F, Chen L, Mao ZB et al (2008) Lentivirus-mediated short hairpin RNA targeting the APRIL gene suppresses the growth of pancreatic cancer cells in vitro and in vivo. Oncol Rep 20:135–139PubMedGoogle Scholar
  21. 21.
    Ding W, Wang J, Sun B et al (2009) APRIL knockdown suppresses migration and invasion of human colon carcinoma cells. Clin Biochem 42:1694–1698PubMedCrossRefGoogle Scholar
  22. 22.
    Li H, Shao K, Wang J et al (2012) Simultaneous knockdown of APRIL via multiple shRNAs reduces the malignancy of SW480 cells. Oncol Rep 28:1613–1618PubMedGoogle Scholar
  23. 23.
    Katsuno Y, Lamouille S, Derynck R (2013) TGF-β signaling and epithelial- mesenchymal transition in cancer progression. Curr Opin Oncol 25:76–84PubMedCrossRefGoogle Scholar
  24. 24.
    Fuxe J, Karlsson MC (2012) TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol 22:455–461PubMedCrossRefGoogle Scholar
  25. 25.
    Drabsch Y, ten Dijke P (2012) TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568PubMedCrossRefGoogle Scholar
  26. 26.
    Skeen VR, Paterson I, Paraskeva C et al (2012) TGF-β1 signalling, connecting aberrant inflammation and colorectal tumorigenesis. Curr Pharm Des 18:3874–3888PubMedCrossRefGoogle Scholar
  27. 27.
    Bellam N, Pasche B (2010) Tgf-beta signaling alterations and colon cancer. Cancer Treat Res 155:85–103PubMedCrossRefGoogle Scholar
  28. 28.
    Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S et al (2012) TGF-beta signalling in colon carcinogenesis. Cancer Lett 314:1–7PubMedCrossRefGoogle Scholar
  29. 29.
    Meulmeester E, Ten Dijke P (2011) The dynamic roles of TGF-β in cancer. J Pathol 223:205–218PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139PubMedCrossRefGoogle Scholar
  31. 31.
    Kong B, Michalski CW, Hong X et al (2010) AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling. Oncogene 29:5146–5158PubMedCrossRefGoogle Scholar
  32. 32.
    Davies M, Robinson M, Smith E et al (2005) Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 95:918–931PubMedCrossRefGoogle Scholar
  33. 33.
    Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res 347:11–20PubMedCrossRefGoogle Scholar
  34. 34.
    de la Cruz-Merino L, Henao-Carrasco F, Garcia-Manrique T et al (2009) Role of transforming growth factor beta in cancer microenvironment. Clin Transl Oncol 11:715–720PubMedCrossRefGoogle Scholar
  35. 35.
    Jia L, Jin H, Zhou J et al (2013) A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement Altern Med 13:33PubMedCrossRefGoogle Scholar
  36. 36.
    Fujita H, Hida M, Kanemoto K et al (2010) Cyclic stretch induces proliferation and TGF-beta1-mediated apoptosis via p38 and ERK in ureteric bud cells. Am J Physiol Renal Physiol 299:F648–F655PubMedCrossRefGoogle Scholar
  37. 37.
    Naz S, Ranganathan P, Bodapati P et al (2012) Regulation of S100A2 expression by TGF-β-induced MEK/ERK signalling and its role in cell migration/invasion. Biochem J 447:81–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Feng Wang
    • 1
  • Lin Chen
    • 2
  • Hongbin Ni
    • 1
  • Guihua Wang
    • 1
  • Weifeng Ding
    • 1
  • Hui Cong
    • 1
  • Shaoqing Ju
    • 1
  • Shumei Yang
    • 1
  • Huimin Wang
    • 1
  1. 1.Department of Clinical Laboratory Center, Affiliated Hospital of Nantong UniversitySchool of Public Health, Nantong UniversityNantongPeople’s Republic of China
  2. 2.Department of Clinical LaboratoryThe Third People’s Hospital of Nantong CityNantongPeople’s Republic of China

Personalised recommendations