Skip to main content

Advertisement

Log in

Aberrant promoter hypermethylation of p21 (WAF1/CIP1) gene and its impact on expression and role of polymorphism in the risk of breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

p21 (Waf-1) is a cyclin-dependent kinase inhibitor that plays essential roles in cell growth arrest, terminal differentiation, and apoptosis. Statistically significant difference in the level of methylation of p21/CIP1 (p < 0. 05) between the patients with breast cancer and the healthy controls was observed. Risk of breast cancer was increased in patients with hypermethylated p21/CIP1 promoter by 2.31-fold (OR = 2.31, 95 % CI 1.95–2.74). The downregulation of p21/CIP1 mRNA expression was statistically significant in patients with methylated promoter (p < 0.00) in comparison to patients with unmethylated genes. Downregulation of mRNA expression of p21/CIP1 was up to 79 % due to promoter hypermethylation. We examined several p21/CIP1 genotypes in the patients with breast cancer and found that there is no significant association of these p21/CIP1 genotypes with the risk of developing breast cancer. However, a significant 2.21-fold increase in the chance of developing breast cancer was observed in the candidates carrying at least one allele Arg mutant in p21/CIP1 genotype (i.e., Ser/Arg + Arg/Arg) with age >50 (OR = 2.21; 95 % CI 1.03–4.79).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. O’Driscoll L, Clynes M (2006) Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Targets 6:365–384

    Article  PubMed  Google Scholar 

  2. Weber BL, Nathamon KL (2000) Low penetrance genes associated with increased risk for breast cancer. Cancer Res 38:1193–1199

    Google Scholar 

  3. Kosaka M, Kang MR, Yang G, Li LC (2012) Targeted p21 (WAF1/CIP1) activation by RNAa inhibits hepatocellular carcinoma cells. Nucleic Acid Ther 22(5):335–343

    CAS  PubMed  Google Scholar 

  4. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  CAS  PubMed  Google Scholar 

  5. Powell BL, Staveren IL, Roosken P, Grieu F, Berns EM, Iacopetta B (2002) Associations between common polymorphisms in TP53 and p21 WAF1/Cip1 and phenotypic features of breast cancer. Carcinogenesis 23:311–315

    Article  CAS  PubMed  Google Scholar 

  6. Lukas J, Groshen S, Saffari B, Niu N, Reles A, Wen WH, Felix J, Jones LA, Hall FL, Press MF (1997) WAF1/Cip1 gene polymorphism and expression in carcinomas of the breast, ovary, and endometrium. Am J Pathol 150:167–175

    CAS  PubMed  Google Scholar 

  7. Roh J, Kim M, Kim J, Park N, Song Y, Kang S et al (2001) Polymorphisms in codon 31 of p21 and cervical cancer susceptibility in Korean women. Cancer Lett 165:59–62

    Article  CAS  PubMed  Google Scholar 

  8. Keshava C, Frye BL, Wolff MS, McCanlies EC (2002) Weston A. Waf-1 (p21) and p53 polymorphisms in breast cancer. Cancer Epidemiol Biomarkers Prev 11:127–130

    CAS  PubMed  Google Scholar 

  9. Somasundaram K, El-Deiry WS (2000) Tumor suppressorp 53: regulation and function. Front Biosci 5:424–437

    Article  Google Scholar 

  10. Hussain SP, Harris CC (2000) Molecular epidemiology and carcinogenesis: endogeneous and exogenous carcinogens. Mutat Res 462:311–322

    Article  CAS  PubMed  Google Scholar 

  11. Caffo O, Doglioni C, Veronese S, Bonzanini M, Marchetti A, Buttitta F, Fina P, Leek R, Morelli L, Palma PD, Harris AL, Barbareschi M (1996) Prognostic value of p21 (WAF1) and p53 expression in breast carcinoma: an immunohistochemical study in 261 patients with long-term follow-up. Clin Cancer Res 2:1591–1599

    CAS  PubMed  Google Scholar 

  12. Boestein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past success for mendelian disease future approaches for complex disease. Nat Genet 3:228–237

    Article  Google Scholar 

  13. Field JK, Spandidos DA (1990) The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis (review). Anticancer Res 10:1–22

    CAS  PubMed  Google Scholar 

  14. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  15. Gulbis B, Galand P (1993) Immuno detection of the p21-ras products in human normal and pre neoplastic tissues and solid tumors: a review. Hum Pathol 24:1271–1285

    Article  CAS  PubMed  Google Scholar 

  16. Florian E, Elisabeth SD, Joachim R (2010) The role of TP53 and p21 gene polymorphisms in breast cancer biology in a well specified and characterized German cohort. J Cancer Res Clin Oncol 136:1369–1375

    Article  Google Scholar 

  17. Chedid M, Michieli P, Lengel C, Huppi K, Givol D (1994) A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of the p53-inducible gene WAF1/CIP1. Oncogene 9:3021–3024

    CAS  PubMed  Google Scholar 

  18. Sun Y, Hildesheim A, Li H, Li Y, Chen JY, Cheng YJ, Hayes RB, Rothman N, Bi WF, Cao Y et al (1995) No point mutation but a codon 31ser/arg polymorphism of the WAF-1/CIP-1/p21 tumor suppressor gene in nasopharyngeal carcinoma (NPC): the polymorphism distinguishes Caucasians from Chinese. Cancer Epidemiol Biomarkers Prev 4:261–267

    CAS  PubMed  Google Scholar 

  19. Sorlie T, Wang Y, Xiao C, Johnsen H, Naume B, Samaha RR, Borresen-Dale AL (2006) Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 7:127

    Article  PubMed  Google Scholar 

  20. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC, O’Connell P (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362:362–369

    Article  CAS  PubMed  Google Scholar 

  21. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398

    Article  CAS  PubMed  Google Scholar 

  22. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B, Mohapatra G, Salunga R, Tuggle JT, Tran Y, Tran D, Tassin A, Amon P, Wang W, Wang W, Enright E, Stecker K, Estepa-Sabal E, Smith B, Younger J, Balis U, Michaelson J, Bhan A, Habin K, Baer TM, Brugge J, Haber DA, Erlander MG, Sgroi DC (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616

    Article  CAS  PubMed  Google Scholar 

  23. El-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y et al (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    CAS  PubMed  Google Scholar 

  24. Bae I, Fan S, Bhatia K, Kohn KW, Fornace AJ, O’Connor PM (1995) Relationships between G1 arrest and stability of the p53 and p21 cip1/waf1 proteins following g-irradiation of human lymphoma cells. Cancer Res 55:2387–2393

    CAS  PubMed  Google Scholar 

  25. Chen YQ, Cipriano SC, Arenkiel JM, Miller FR (1995) Tumor suppression by p21 WAF1. Cancer Res 55:4536–4539

    CAS  PubMed  Google Scholar 

  26. Schwaller J, Pabst T, Koeffler HP, Niklaus G, Loetscher P, Fey MF, Tobler A (1997) Expression and regulation of G1 cell-cycle inhibitors (p16INK4A, p15INK4B, p18INK4C, p19INK4D) in human acute myeloid leukemia and normal myeloid cells. Leukemia 11:54–63

    Article  CAS  PubMed  Google Scholar 

  27. Nanjokat C, Sezer O, Zinkett H, Lechere A, Hauptmann S, Possinger K (2000) Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21 WAF1/CIP1 in human immature leukemic cells. Eur J Haematol 65:221–236

    Article  Google Scholar 

  28. Roman-Gomez J, Castillejo JA, Jimenez A, Gonzalez MG, Moreno F, RodriguezMdel C, Barrios M, Maldonado J, Torres A (2002) 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21 (CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99:2291–2296

    Article  CAS  PubMed  Google Scholar 

  29. Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SM (2000) Loss of p21 WAF1/CIP1 accelerates Rasoncogenesis in a transgenic/knockout mammary cancer model. Oncogene 19:5338–5347

    Article  CAS  PubMed  Google Scholar 

  30. Ying J, Srivastava G, Gao Z, Zhang X, Murray P, Ambinder R, Tao Q (2004) Promoter hypermethylation of the cyclin-dependent kinase inhibitor (CDKI) gene p21 WAF1/CIP1/SDI1 is rare in various lymphomas and carcinomas. Blood 103:743–746

    Article  CAS  PubMed  Google Scholar 

  31. Pinyol M, Hernandez L, Cazorla M, Balbín M, Jares P, Fernandez PL, Montserrat E, Cardesa A, Lopez-Otín C, Campo E (1997) Deletions and loss of expression of p16INK4a and p21WAF1 genes are associated with aggressive variants of mantle cell lymphomas. Blood 89:272–278

    CAS  PubMed  Google Scholar 

  32. Stein JP, Ginsberg DA, Grossfeld GD, Chatterjee SJ, Esrig D, Dickinson MG, Groshen S, Taylor CR, Jones PA, Skinner DG, Cote RJ (1998) Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 90:1072–1079

    Article  CAS  PubMed  Google Scholar 

  33. Birgander R, Sjalander A, Saha N, Spitsyn V, Beckman L, Beckman G (1996) The codon 31 polymorphism of the P53-inducible gene P21 shows distinct differences between major ethinic groups. Hum Hered 46:148–154

    Article  CAS  PubMed  Google Scholar 

  34. Sjalander A, Birgander R, Hallmans G, Cajander S, Lenner P, Athlin L, Beckman G, Beckman L (1996) p53 polymorphisms and Haplotypes in breast cancer. Carcinogenesis 17:1313–1316

    Article  CAS  PubMed  Google Scholar 

  35. Hachiya T, Kuriaki Y, Ueoka Y, Nishida J, Kato K, Wake N (1999) WAF1 genotype and endometrial cancer susceptibility. Gyneco Oncol 72:187–192

    Article  CAS  Google Scholar 

  36. Mousses S, Ozcelik H, Lee PD, Malkin D, Bull SB, Andrulis IL (1995) Two variants of the CIP1/WAF1 gene occur together and areassociated with human cancer. Hum Mol Genet 4:1089–1092

    Article  CAS  PubMed  Google Scholar 

  37. Facher EA, Becich MJ, Deka A, Law JC (1997) Association between human cancer and two polymorphisms occurring together in the p21 Waf1/Cip1 cyclin-dependent kinase inhibitor gene. Cancer 79:2424–2429

    Article  CAS  PubMed  Google Scholar 

  38. Su L, Liu G, Zhou W, Xu LL, Miller D, Park S, Lynch TJ, Wain JC, Christiani DC (2003) No Association between the p21 codon 31 serine–arginine polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev 12:174–175

    CAS  PubMed  Google Scholar 

  39. Wu MT, Wu DC, Hsu HK, Kao EL, Yang CH, Lee JM (2003) Association between p21 codon 31 polymorphism and esophageal cancer risk in a Taiwanese population. Cancer Lett 201:175–180

    Article  CAS  PubMed  Google Scholar 

  40. Huang SP, Wen-Jeng Wu, Wun-Shaifng Wayne, Chang et al (2004) P53 codon 72 and p21 codon 31 polymorphism in prostate cancer. Cancer Epidemiol Biomarkers Prev 13:2217–2224

    CAS  PubMed  Google Scholar 

  41. McKenzie KE, Siva A, Maier S et al (1997) Altered WAF1 genes do not play a role in abnormal cell cycle regulation in breast cancers lacking p53 mutations. Clin Cancer Res 3:1669–1673

    CAS  PubMed  Google Scholar 

  42. Shen H, Spitz MR, Qiao Y, Zheng Y (2002) Polymorphism of DNA ligase I and risk of lung cancer- a case-control analysis. Lung Cancer 36:243–247

    Article  PubMed  Google Scholar 

  43. Garcia-Manero G, Jeha S, Daniel J, Williamson J, Albitar M, Kantarjian HM, Issa JP (2003) Aberrant DNA methylation in pediatric patients with acute lymphocytic leukemia. Cancer 97:695–702

    Article  CAS  PubMed  Google Scholar 

  44. Staalesen V, Leirvaag B, Lillehaug JR, Lonning PE (2004) Genetic and epigenetic changes in p21 and p21B do not correlate with resistance to doxorubicin or mitomycin and 5-fluorouracil in locally advanced breast cancer. Clin Cancer Res 15:3438–3443

    Article  Google Scholar 

  45. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclindependent kinases. Genes Dev 9:1149–1163

    Article  CAS  PubMed  Google Scholar 

  46. Wang XY, Wang YG, Wang YF (2011) Ginsenoside Rb1, Rg1 and three extracts of traditional Chinese medicine attenuate ultraviolet B-induced G1 growth arrest in HaCaT cells and dermal fibroblasts involve down-regulating the expression of p16, p21 and p53. Photodermatol Photoimmunol Photomed 27:203–212

    Article  PubMed  Google Scholar 

  47. Wakasugi E, Kobayashi T, Tamaki Y, Ito Y, Miyashiro I, Komoike Y, Takeda T, Shin E, Takatsuka Y, Kikkawa N, Monden T, Monden M (1997) p21 (Waf1/Cip1) and p53 protein expression in breast cancer. Am J Clin Pathol 107:684–691

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the staff of PGIMER for providing the clinical samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranbir Chander Sobti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askari, M., Sobti, R.C., Nikbakht, M. et al. Aberrant promoter hypermethylation of p21 (WAF1/CIP1) gene and its impact on expression and role of polymorphism in the risk of breast cancer. Mol Cell Biochem 382, 19–26 (2013). https://doi.org/10.1007/s11010-013-1696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1696-5

Keywords

Navigation