Advertisement

Molecular and Cellular Biochemistry

, Volume 380, Issue 1–2, pp 171–176 | Cite as

Effects of acute and chronic administration of fenproporex on DNA damage parameters in young and adult rats

  • Cinara L. Gonçalves
  • Gislaine T. Rezin
  • Gabriela K. Ferreira
  • Isabela C. Jeremias
  • Mariane R. Cardoso
  • Samira S. Valvassori
  • Bruna J. P. Munhoz
  • Gabriela D. Borges
  • Bruno N. Bristot
  • Daniela D. Leffa
  • Vanessa M. Andrade
  • João Quevedo
  • Emilio L. Streck
Article

Abstract

Obesity is a chronic and multifactorial disease, whose prevalence is increasing in many countries. Pharmaceutical strategies for the treatment of obesity include drugs that regulate food intake, thermogenesis, fat absorption, and fat metabolism. Fenproporex is the second most commonly consumed amphetamine-based anorectic worldwide; this drug is rapidly converted in vivo into amphetamine, which is associated with neurotoxicity. In this context, the present study evaluated DNA damage parameters in the peripheral blood of young and adult rats submitted to an acute administration and chronic administration of fenproporex. In the acute administration, both young and adult rats received a single injection of fenproporex (6.25, 12.5 or 25 mg/kg i.p.) or vehicle. In the chronic administration, both young and adult rats received one daily injection of fenproporex (6.25, 12.5, or 25 mg/kg i.p.) or Tween for 14 days. 2 h after the last injection, the rats were killed by decapitation and their peripheral blood removed for evaluation of DNA damage parameters by alkaline comet assay. Our study showed that acute administration of fenproporex in young and adult rats presented higher levels of damage index and frequency in the DNA. However, chronic administration of fenproporex in young and adult rats did not alter the levels of DNA damage in both parameters of comet assay. The present findings showed that acute administration of fenproporex promoted damage in DNA, in both young and adult rats. Our results are consistent with other reports which showed that other amphetamine-derived drugs also caused DNA damage. We suggest that the activation of an efficient DNA repair mechanism may occur after chronic exposition to fenproporex. Our results are consistent with other reports that showed some amphetamine-derived drugs also caused DNA damage.

Keywords

Fenproporex DNA damage Peripheral blood Rats 

Notes

Acknowledgments

This research was supported by grants from Programa de Pós-graduação em Ciências da Saúde—Universidade do Extremo Sul Catarinense (UNESC), Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina NENASC project, Conselho Nacional de Desenvolvimento Científico e Tecnológico (PRONEX—FAPESC/CNPq), and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT).

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Deitel M (2003) Overweight and obesity worldwide now estimated to involve 1.7 billion people. Obes Surg 13:329–330PubMedCrossRefGoogle Scholar
  2. 2.
    World Health Organization (2006) Obesity and overweight. Media Center, Fact Sheet N_311Google Scholar
  3. 3.
    Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643PubMedGoogle Scholar
  4. 4.
    Halpern A, Mancini MC (2003) Treatment of obesity: an update on anti-obesity medications. Obes Rev 4:25–42PubMedCrossRefGoogle Scholar
  5. 5.
    Bray GA, Tartaglia LA (2000) Medicinal strategies in the treatment of obesity. Nature 404:672–677PubMedGoogle Scholar
  6. 6.
    Bray GA (1993) Use and abuse of appetite-suppressant drugs in the treatment of obesity. Ann Intern Med 119:707–713PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen PA (2009) Imported fenproporex-based diet pills from Brazil: a report of two cases. J Gen Intern Med 24:430–433PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Coutts RT, Nazarali AJ, Baker GB, Pasutto FM (1986) Metabolism and disposition of N-(2-cyanoethyl)-amphetamine (fenproporex) and amphetamine: study in the rat brain. Can J Physiol Pharmacol 64:724–728PubMedCrossRefGoogle Scholar
  9. 9.
    Mattei R, Carlini EA (1996) A comparative study of the anorectic and behavioral effects of fenproporex on male and female rats. Braz J Med Biol Res 29:1025–1030PubMedGoogle Scholar
  10. 10.
    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMedGoogle Scholar
  11. 11.
    Pélissier-Alicot AL, Piercecchi-Marti MD, Bartoli C, Kuhlmann E, Coiffait PE, Sanvoisin A, Giocanti D, Léonetti G (2006) Abusive prescription of psychostimulants: a study of two cases. J Forensic Sci 51:407–410PubMedCrossRefGoogle Scholar
  12. 12.
    Snyder RD, Green JW (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutat Res 488:151–169PubMedCrossRefGoogle Scholar
  13. 13.
    Krishna G, Hayashi M (2000) In vivo rodent micronucleus assay: protocol, conduct and data interpretation. Mutat Res 455:155–166PubMedCrossRefGoogle Scholar
  14. 14.
    Gunter MJ, Leitzmann MF (2006) Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J Nutr Biochem 17:145–156PubMedCrossRefGoogle Scholar
  15. 15.
    Halford JCG (2006) Pharmacotherapy for obesity. Appetite 46:6–10PubMedCrossRefGoogle Scholar
  16. 16.
    Rezin GT, Jeremias IC, Ferreira GK, Cardoso MR, Morais MO, Gomes LM, Martinello OB, Valvassori SS, Quevedo J, Streck EL (2011) Brain energy metabolism is activated after acute and chronic administration of fenproporex in young rats. Int J Dev Neurosci 29:937–942PubMedCrossRefGoogle Scholar
  17. 17.
    Rezin GT, Scaini G, Ferreira GK, Cardoso MR, Gonçalves CL, Constantino LS, Deroza PF, Ghedim FV, Valvassori SS, Resende WR, Quevedo J, Zugno AI, Streck EL (2012) Inhibition of acetylcholinesterase activity in brain and behavioral analysis in adult rats after chronic administration of fenproporex. Metab Brain Dis 27:453–458PubMedCrossRefGoogle Scholar
  18. 18.
    Singh NP, Mccoy MT, Tice RR, Schneider EL (1998) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefGoogle Scholar
  19. 19.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221PubMedCrossRefGoogle Scholar
  20. 20.
    Villela IV, Oliveira IM, Silva J, Henriques JAP (2006) DNA damage and repair in hemolymph cells of golden mussel (Limnoperna fortunei) exposed to environmental contaminants. Mutat Res 605:78–86PubMedCrossRefGoogle Scholar
  21. 21.
    Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261PubMedCrossRefGoogle Scholar
  22. 22.
    Moreira CQ, Faria MJ, Moreira EG (2005) Behavioral neurotoxicity in adolescent and adult mice exposed to fenproporex during pregnancy. Human Exp Toxicol 24:403–408CrossRefGoogle Scholar
  23. 23.
    Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: topical issues. Mutagenesis 23:143–151PubMedCrossRefGoogle Scholar
  24. 24.
    Dusinska M, Collins AR (2008) The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis 23:191–205PubMedCrossRefGoogle Scholar
  25. 25.
    McKenna DJ, McKeown SR, McKelvey-Martin VJ (2008) Potential use of the comet assay in the clinical management of cancer. Mutagenesis 23:183–190PubMedCrossRefGoogle Scholar
  26. 26.
    Wasson GR, McKelvey-Martin VJ, Downes CS (2008) The use of the comet assay in the study of human nutrition and cancer. Mutagenesis 23:153–162PubMedCrossRefGoogle Scholar
  27. 27.
    Cody JT, Valtier S, Stillman S (1999) Amphetamine and fenproporex levels following multidose administration of fenproporex. J Anal Toxicol 23:187–194PubMedCrossRefGoogle Scholar
  28. 28.
    Kraemer T, Theis GA, Weber AA (2000) Studies on the metabolism and toxicological detection of the amphetamine-like anorectic fenproporex in human urine by gas chromatography–mass spectrometry and fluorescence polarization immunoassay. J Chromatogr B 738:107–118CrossRefGoogle Scholar
  29. 29.
    Bengel D, Isaacs KR, Heils A, Lesch KP, Murphy DL (1998) The appetite suppressant d-fenfluramine induces apoptosis in human serotonergic cells. Neuroreport 9:2989–2993PubMedCrossRefGoogle Scholar
  30. 30.
    da Silva CJ, dos Santos JE, Satie Takahashi C (2010) An evaluation of the genotoxic and cytotoxic effects of the anti-obesity drugs sibutramine and fenproporex. Hum Exp Toxicol 29:187–197PubMedCrossRefGoogle Scholar
  31. 31.
    Andreazza AC, Kauer-Sant’Anna M, Frey BN, Stertz L, Zanotto C, Ribeiro L, Giasson K, Valvassori SS, Réus GZ, Salvador M, Quevedo J, Gonçalves CA, Kapczinski F (2008) Effects of mood stabilizers on DNA damage in an animal model of mania. J Psychiatry Neurosci 33:516–524PubMedCentralPubMedGoogle Scholar
  32. 32.
    El-Khamisy SF, Caldecott KW (2006) TDP1-dependent DNA single strand break repair and neurodegeneration. Mutagenesis 21:219–224PubMedCrossRefGoogle Scholar
  33. 33.
    Emerit I (1994) Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radical Biol Med 16:99–109CrossRefGoogle Scholar
  34. 34.
    Alvarenga TA, Andersen ML, Ribeiro DA, Araujo P, Hirotsu C, Costa JL, Battisti MC, Tufik S (2010) Single exposure to cocaine or ecstasy induces DNA damage in brain and other organs of mice. Addict Biol 15(1):96–99PubMedCrossRefGoogle Scholar
  35. 35.
    Pereira P, Gianesini J, da Silva Barbosa C, Cassol GF, Von Borowski RG, Kahl VF, Cappelari SE, Picada JN (2009) Neurobehavioral and genotoxic parameters of duloxetine in mice using the inhibitory avoidance task and comet assay as experimental models. Pharmacol Res 59(1):57–61PubMedCrossRefGoogle Scholar
  36. 36.
    Arnaiz SL, Coronel MF, Boveris A (1999) Nitric oxide, superoxide and hydrogen peroxide production in brain mitochondria after haloperidol treatment. Nitric Oxide 3:235–243PubMedCrossRefGoogle Scholar
  37. 37.
    Frey BN, Valvassori SS, Gomes KM, Martins MR, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res 1097:224–229PubMedCrossRefGoogle Scholar
  38. 38.
    Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332PubMedCentralPubMedGoogle Scholar
  39. 39.
    Halliwell B (1996) Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24:1023–1027PubMedGoogle Scholar
  40. 40.
    Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149PubMedCrossRefGoogle Scholar
  41. 41.
    Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:670–686CrossRefGoogle Scholar
  42. 42.
    Valvassori SS, Rezin GT, Ferreira CL, Moretti M, Gonçalves CL, Cardoso MR, Streck EL, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 44:903–909PubMedCrossRefGoogle Scholar
  43. 43.
    Frenzilli G, Ferrucci M, Giorgi FS, Blandini F, Nigro M, Ruggieri S, Murri L, Paparelli A, Fornai F (2007) DNA fragmentation and oxidative stress in the hippocampal formation: a bridge between 3,4-methylenedioxymethamphetamine (ecstasy) intake and long-lasting behavioral alterations. Behav Pharmacol 18(5–6):471–481PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cinara L. Gonçalves
    • 1
    • 2
    • 3
  • Gislaine T. Rezin
    • 4
  • Gabriela K. Ferreira
    • 1
    • 2
    • 3
  • Isabela C. Jeremias
    • 1
    • 2
    • 3
  • Mariane R. Cardoso
    • 1
    • 2
    • 3
  • Samira S. Valvassori
    • 2
    • 3
    • 5
  • Bruna J. P. Munhoz
    • 6
  • Gabriela D. Borges
    • 6
  • Bruno N. Bristot
    • 6
  • Daniela D. Leffa
    • 6
  • Vanessa M. Andrade
    • 6
  • João Quevedo
    • 2
    • 3
    • 5
  • Emilio L. Streck
    • 1
    • 2
    • 3
  1. 1.Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  2. 2.National Institute for Translational Medicine (INCT-TM)CriciúmaBrazil
  3. 3.Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC)CriciúmaBrazil
  4. 4.Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Sul de Santa CatarinaTubarãoBrazil
  5. 5.Laboratório de Neurociências, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  6. 6.Laboratório de Biologia Celular e Molecular, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil

Personalised recommendations