Advertisement

Molecular and Cellular Biochemistry

, Volume 379, Issue 1–2, pp 181–190 | Cite as

Epistatic interaction of Arg72Pro TP53 and −710 C/T VEGFR1 polymorphisms in breast cancer: predisposition and survival

  • Patricia Rodrigues
  • Jessica Furriol
  • Eduardo Tormo
  • Sandra Ballester
  • Ana Lluch
  • Pilar Eroles
Article

Abstract

The tumour-suppressor gene TP53 has been associated with the angiogenic pathway by a TP53 response element sequence of the VEGFR1 promoter. Within that sequence, the polymorphism −710 C/T VEGFR1, which confers variable transcriptional activation by TP53, has been identified. Our group found an association between this polymorphism and breast cancer (BC) risk. We decided to investigate a possible epistatic interaction between this polymorphism and others located at gene TP53. We chose four polymorphisms (Ex4 + 119G > C, IVS4-91A > G, IVS6 + 62A > G and IVS7 + 92T > G) to analyse out of a total of 461 controls and 453 BC patients in a Spanish population. The two-locus combined analysis of TP53 and 710 C/T VEGFR1 polymorphisms was performed with the multifactor dimension reduction approach. Kaplan–Meier disease-free survival curves were calculated using the SPSS package. Carriers of at least one Pro allele of the Ex4 + 119G > C TP53 polymorphism presented a significant BC risk [OR = 1.34, (95 % CI 1.03–1.75), p value = 0.029]. The epistatic gene–gene analysis showed that the best two-locus model was the combination between Ex4 + 119G > C TP53 and 710 C/T VEGFR1 showing OR of 1.44 (95 % CI 1.10–1.88, p value = 0.0083). Moreover, the Pro/Pro genotypes of Ex4 + 119G > C were associated with poor disease-free survival (p value = 0.013). We conclude that the Ex4 + 119G > C TP53 polymorphism is an independent, low penetrance marker of BC risk in this population. In addition, our findings suggest that the combination of Ex4 + 119G > C TP53 and 710 C/T VEGFR1 genotypes confers a higher risk to develop BC. Also, a possible association of the Ex4 + 119G > C TP53 genotype with decreased disease-free survival in these patients is proposed.

Keywords

TP53 VEGFR1 Breast cancer Polymorphisms Epistatic 

List of Abbreviations

BC

Breast cancer

BRCA1

Breast cancer 1

BRCA2

Breast cancer 2

CI

Confidence Interval

CVC

Cross-validation consistency

DFS

Disease-free survival

HWE

Hardy–Weinberg equilibrium

KM

Kaplan–Meier

MDR

Multifactor dimensionality reduction

OR

Odds ratio

SNP

Single-nucleotide polymorphism

TP53

Tumour-suppressor 53

VEGFR1

Vascular endothelial growth factor receptor 1

Notes

Acknowledgements

This work was supported in part by Grants from the Ministerio de Salud Carlos III, the Consellería de Sanidad [GE-004/09] and the Foundation Gent x Gent to AL and PE. PR holds a Santiago Grisolia fellowship from the Conselleria de Sanidad Valenciana. JF is funded by the RTICC RD06/0020/0080. ET receives funds from grant PS09/01700. PE is supported by the Instituto de Salud Carlos III under a ‘Miquel Servet’ contract [FIS03/0090].

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Frank B, Hemminki K, Wirtenberger M, Bermejo JL, Bugert P, Klaes R, Schmutzler RK, Wappenschmidt B, Bartram CR, Burwinkel B (2005) The rare ERBB2 variant Ile654Val is associated with an increased familial breast cancer risk. Carcinogenesis 26(3):643–647. doi: 10.1093/carcin/bgh342 PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  3. 3.
    Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150. doi: 10.1200/JCO.2005.05.2308 PubMedCrossRefGoogle Scholar
  4. 4.
    Akisik E, Dalay N (2004) Estrogen receptor codon 594 and HER2 codon 655 polymorphisms and breast cancer risk. Exp Mol Pathol 76(3):260–263. doi: 10.1016/j.yexmp.2003.12.005 PubMedCrossRefGoogle Scholar
  5. 5.
    Weber BL, Nathanson KL (2000) Low penetrance genes associated with increased risk for breast cancer. Eur J Cancer 36(10):1193–1199PubMedCrossRefGoogle Scholar
  6. 6.
    Hemminki K, Granstrom C (2003) Familial breast cancer: scope for more susceptibility genes? Breast Cancer Res Treat 82(1):17–22PubMedCrossRefGoogle Scholar
  7. 7.
    Breast Cancer Association Consortium (2006) Commonly studied single-nucleotide polymorphisms and breast cancer: results from the breast cancer association consortium. J Natl Cancer Inst 98(19):1382–1396. doi: 10.1093/jnci/djj374 CrossRefGoogle Scholar
  8. 8.
    Dapic V, Carvalho MA, Monteiro AN (2005) Breast cancer susceptibility and the DNA damage response. Cancer Control 12(2):127–136PubMedGoogle Scholar
  9. 9.
    Feki A, Irminger-Finger I (2004) Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 52(2):103–116. doi: 10.1016/j.critrevonc.2004.07.002 PubMedCrossRefGoogle Scholar
  10. 10.
    Gasco M, Shami S, Crook T (2002) The p53 pathway in breast cancer. Breast Cancer Res 4(2):70–76PubMedCrossRefGoogle Scholar
  11. 11.
    Benchimol S, Lamb P, Crawford LV, Sheer D, Shows TB, Bruns GA, Peacock J (1985) Transformation associated p53 protein is encoded by a gene on human chromosome 17. Somat Cell Mol Genet 11(5):505–510PubMedCrossRefGoogle Scholar
  12. 12.
    Pim D, Banks L (2004) p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer 108(2):196–199. doi: 10.1002/ijc.11548 PubMedCrossRefGoogle Scholar
  13. 13.
    Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331PubMedCrossRefGoogle Scholar
  14. 14.
    Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C, Soussi T (2006) The UMD TP53 database and website: update and revisions. Hum Mutat 27(1):14–20. doi: 10.1002/humu.20269 PubMedCrossRefGoogle Scholar
  15. 15.
    Litviakov NV, Denisov EV, Takhauov RM, Karpov AB, Skobel’skaja EV, Vasil’eva EO, Goncharik OO, Ageeva AM, Mamonova NV, Mezheritskiy SA, Sevost’janova NV, Koshel AP (2010) Association between TP53 gene ARG72PRO polymorphism and chromosome aberrations in human cancers. Mol Carcinog 49(6):521–524. doi: 10.1002/mc.20633 PubMedGoogle Scholar
  16. 16.
    Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9(2):95–107. doi: 10.1038/nrc2584 PubMedCrossRefGoogle Scholar
  17. 17.
    Zhuo W, Zhang Y, Xiang Z, Cai L, Chen Z (2009) Polymorphisms of TP53 codon 72 with breast carcinoma risk: evidence from 12226 cases and 10782 controls. J Exp Clin Cancer Res 28:115. doi: 10.1186/1756-9966-28-115 PubMedCrossRefGoogle Scholar
  18. 18.
    Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, Schmitt F (2008) Importance of TP53 codon 72 and intron 3 duplication 16 bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer 8:32. doi: 10.1186/1471-2407-8-32 PubMedCrossRefGoogle Scholar
  19. 19.
    Matlashewski GJ, Tuck S, Pim D, Lamb P, Schneider J, Crawford LV (1987) Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol 7(2):961–963PubMedGoogle Scholar
  20. 20.
    Sakamuro D, Sabbatini P, White E, Prendergast GC (1997) The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15(8):887–898. doi: 10.1038/sj.onc.1201263 PubMedCrossRefGoogle Scholar
  21. 21.
    Dumont P, Leu JI, Della Pietra AC 3rd, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33(3):357–365. doi: 10.1038/ng1093 PubMedCrossRefGoogle Scholar
  22. 22.
    Toyama T, Zhang Z, Nishio M, Hamaguchi M, Kondo N, Iwase H, Iwata H, Takahashi S, Yamashita H, Fujii Y (2007) Association of TP53 codon 72 polymorphism and the outcome of adjuvant therapy in breast cancer patients. Breast Cancer Res 9(3):R34. doi: 10.1186/bcr1682 PubMedCrossRefGoogle Scholar
  23. 23.
    Tommiska J, Eerola H, Heinonen M, Salonen L, Kaare M, Tallila J, Ristimaki A, von Smitten K, Aittomaki K, Heikkila P, Blomqvist C, Nevanlinna H (2005) Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 11(14):5098–5103. doi: 10.1158/1078-0432.CCR-05-0173 PubMedCrossRefGoogle Scholar
  24. 24.
    Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93(26):15335–15340PubMedCrossRefGoogle Scholar
  25. 25.
    Buyru N, Tigli H, Dalay N (2003) P53 codon 72 polymorphism in breast cancer. Oncol Rep 10(3):711–714PubMedGoogle Scholar
  26. 26.
    Noma C, Miyoshi Y, Taguchi T, Tamaki Y, Noguchi S (2004) Association of p53 genetic polymorphism (Arg72Pro) with estrogen receptor positive breast cancer risk in Japanese women. Cancer Lett 210(2):197–203. doi: 10.1016/j.canlet.2004.03.031 PubMedCrossRefGoogle Scholar
  27. 27.
    Wang-Gohrke S, Rebbeck TR, Besenfelder W, Kreienberg R, Runnebaum IB (1998) p53 germline polymorphisms are associated with an increased risk for breast cancer in German women. Anticancer Res 18(3B):2095–2099PubMedGoogle Scholar
  28. 28.
    Weston A, Pan CF, Ksieski HB, Wallenstein S, Berkowitz GS, Tartter PI, Bleiweiss IJ, Brower ST, Senie RT, Wolff MS (1997) p53 haplotype determination in breast cancer. Cancer Epidemiol Biomarkers Prev 6(2):105–112PubMedGoogle Scholar
  29. 29.
    Alawadi S, Ghabreau L, Alsaleh M, Abdulaziz Z, Rafeek M, Akil N, Alkhalaf M (2011) P53 gene polymorphisms and breast cancer risk in Arab women. Med Oncol 28(3):709–715. doi: 10.1007/s12032-010-9505-4 PubMedCrossRefGoogle Scholar
  30. 30.
    Ebner F, Schremmer-Danninger E, Rehbock J (2010) The role of TP53 and p21 gene polymorphisms in breast cancer biology in a well specified and characterized German cohort. J Cancer Res Clin Oncol 136(9):1369–1375. doi: 10.1007/s00432-010-0788-9 PubMedCrossRefGoogle Scholar
  31. 31.
    Henriquez-Hernandez LA, Murias-Rosales A, Hernandez Gonzalez A, Cabrera De Leon A, Diaz-Chico BN, Mori De Santiago M, Fernandez Perez L (2009) Gene polymorphisms in TYMS, MTHFR, p53 and MDR1 as risk factors for breast cancer: a case-control study. Oncol Rep 22(6):1425–1433PubMedCrossRefGoogle Scholar
  32. 32.
    Kyndi M, Alsner J, Hansen LL, Sorensen FB, Overgaard J (2006) LOH rather than genotypes of TP53 codon 72 is associated with disease-free survival in primary breast cancer. Acta Oncol 45(5):602–609. doi: 10.1080/02841860600660811 PubMedCrossRefGoogle Scholar
  33. 33.
    Ohayon T, Gershoni-Baruch R, Papa MZ, Distelman Menachem T, Eisenberg Barzilai S, Friedman E (2005) The R72P P53 mutation is associated with familial breast cancer in Jewish women. Br J Cancer 92(6):1144–1148. doi: 10.1038/sj.bjc.6602451 PubMedCrossRefGoogle Scholar
  34. 34.
    Rajkumar T, Samson M, Rama R, Sridevi V, Mahji U, Swaminathan R, Nancy NK (2008) TGFbeta1 (Leu10Pro), p53 (Arg72Pro) can predict for increased risk for breast cancer in south Indian women and TGFbeta1 Pro (Leu10Pro) allele predicts response to neo-adjuvant chemo-radiotherapy. Breast Cancer Res Treat 112(1):81–87. doi: 10.1007/s10549-007-9821-3 PubMedCrossRefGoogle Scholar
  35. 35.
    Trifa F, Karray-Chouayekh S, Mabrouk I, Baccouche S, Khabir A, Sellami-Boudawara T, Gargouri A, Mokdad-Gargouri R (2010) Haplotype analysis of p53 polymorphisms: Arg72Pro, Ins16 bp and G13964C in Tunisian patients with familial or sporadic breast cancer. Cancer Epidemiol 34(2):184–188. doi: 10.1016/j.canep.2010.02.007 PubMedCrossRefGoogle Scholar
  36. 36.
    Schmidt MK, Reincke S, Broeks A, Braaf LM, Hogervorst FB, Tollenaar RA, Johnson N, Fletcher O, Peto J, Tommiska J, Blomqvist C, Nevanlinna HA, Healey CS, Dunning AM, Pharoah PD, Easton DF, Dork T, Van’t Veer LJ (2007) Do MDM2 SNP309 and TP53 R72P interact in breast cancer susceptibility? A large pooled series from the breast cancer association consortium. Cancer Res 67(19):9584–9590. doi: 10.1158/0008-5472.CAN-07-0738 PubMedCrossRefGoogle Scholar
  37. 37.
    Mavridou D, Gornall R, Campbell IG, Eccles DM (1998) TP53 intron 6 polymorphism and the risk of ovarian and breast cancer. Br J Cancer 77(4):676–677PubMedCrossRefGoogle Scholar
  38. 38.
    Peller S, Kopilova Y, Slutzki S, Halevy A, Kvitko K, Rotter V (1995) A novel polymorphism in intron 6 of the human p53 gene: a possible association with cancer predisposition and susceptibility. DNA Cell Biol 14(12):983–990PubMedCrossRefGoogle Scholar
  39. 39.
    Sjalander A, Birgander R, Hallmans G, Cajander S, Lenner P, Athlin L, Beckman G, Beckman L (1996) p53 polymorphisms and haplotypes in breast cancer. Carcinogenesis 17(6):1313–1316PubMedCrossRefGoogle Scholar
  40. 40.
    Wang-Gohrke S, Becher H, Kreienberg R, Runnebaum IB, Chang-Claude J (2002) Intron 3 16 bp duplication polymorphism of p53 is associated with an increased risk for breast cancer by the age of 50 years. Pharmacogenetics 12(3):269–272PubMedCrossRefGoogle Scholar
  41. 41.
    Sprague BL, Trentham-Dietz A, Garcia-Closas M, Newcomb PA, Titus-Ernstoff L, Hampton JM, Chanock SJ, Haines JL, Egan KM (2007) Genetic variation in TP53 and risk of breast cancer in a population-based case control study. Carcinogenesis 28(8):1680–1686. doi: 10.1093/carcin/bgm097 PubMedCrossRefGoogle Scholar
  42. 42.
    Garcia-Closas M, Kristensen V, Langerod A, Qi Y, Yeager M, Burdett L, Welch R, Lissowska J, Peplonska B, Brinton L, Gerhard DS, Gram IT, Perou CM, Borresen-Dale AL, Chanock S (2007) Common genetic variation in TP53 and its flanking genes, WDR79 and ATP1B2, and susceptibility to breast cancer. Int J Cancer 121(11):2532–2538. doi: 10.1002/ijc.22985 PubMedCrossRefGoogle Scholar
  43. 43.
    Rodrigues P, Furriol J, Tormo E, Ballester S, Lluch A, Eroles P (2012) The single-nucleotide polymorphisms +936 C/T VEGF and −710 C/T VEGFR1 are associated with breast cancer protection in a Spanish population. Breast Cancer Res Treat. doi: 10.1007/s10549-012-1980-1 PubMedGoogle Scholar
  44. 44.
    Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR, Moore JH (2011) A robust multifactor dimensionality reduction method for detecting gene–gene interactions with application to the genetic analysis of bladder cancer susceptibility. Ann Hum Genet 75(1):20–28. doi: 10.1111/j.1469-1809.2010.00624.x PubMedCrossRefGoogle Scholar
  45. 45.
    Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241(2):252–261. doi: 10.1016/j.jtbi.2005.11.036 PubMedCrossRefGoogle Scholar
  46. 46.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929. doi: 10.1093/bioinformatics/btl268 PubMedCrossRefGoogle Scholar
  47. 47.
    Su MW, Tung KY, Liang PH, Tsai CH, Kuo NW, Lee YL (2012) Gene–gene and gene–environmental interactions of childhood asthma: a multifactor dimension reduction approach. PLoS One 7(2):e30694. doi: 10.1371/journal.pone.0030694 PubMedCrossRefGoogle Scholar
  48. 48.
    Williams SM, Ritchie MD, Phillips JA 3rd, Dawson E, Prince M, Dzhura E, Willis A, Semenya A, Summar M, White BC, Addy JH, Kpodonu J, Wong LJ, Felder RA, Jose PA, Moore JH (2004) Multilocus analysis of hypertension: a hierarchical approach. Hum Hered 57(1):28–38. doi: 10.1159/000077387 PubMedCrossRefGoogle Scholar
  49. 49.
    Cho YM, Ritchie MD, Moore JH, Park JY, Lee KU, Shin HD, Lee HK, Park KS (2004) Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia 47(3):549–554. doi: 10.1007/s00125-003-1321-3 PubMedCrossRefGoogle Scholar
  50. 50.
    Coffey CS, Hebert PR, Ritchie MD, Krumholz HM, Gaziano JM, Ridker PM, Brown NJ, Vaughan DE, Moore JH (2004) An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene–gene interactions on risk of myocardial infarction: the importance of model validation. BMC Bioinformatics 5:49. doi: 10.1186/1471-2105-5-49 PubMedCrossRefGoogle Scholar
  51. 51.
    Xu J, Lowey J, Wiklund F, Sun J, Lindmark F, Hsu FC, Dimitrov L, Chang B, Turner AR, Liu W, Adami HO, Suh E, Moore JH, Zheng SL, Isaacs WB, Trent JM, Gronberg H (2005) The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol Biomarkers Prev 14(11 Pt 1):2563–2568. doi: 10.1158/1055-9965.EPI-05-0356 PubMedCrossRefGoogle Scholar
  52. 52.
    Ihsan R, Chauhan PS, Mishra AK, Yadav DS, Kaushal M, Sharma JD, Zomawia E, Verma Y, Kapur S, Saxena S (2011) Multiple analytical approaches reveal distinct gene–environment interactions in smokers and non smokers in lung cancer. PLoS One 6(12):e29431. doi: 10.1371/journal.pone.0029431 PubMedCrossRefGoogle Scholar
  53. 53.
    Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen–metabolism genes in sporadic breast cancer. Am J Hum Genet 69(1):138–147. doi: 10.1086/321276 PubMedCrossRefGoogle Scholar
  54. 54.
    Epistasis.org http://www.epistasis.org. Accessed July 2012
  55. 55.
    Menendez D, Inga A, Snipe J, Krysiak O, Schonfelder G, Resnick MA (2007) A single-nucleotide polymorphism in a half-binding site creates p53 and estrogen receptor control of vascular endothelial growth factor receptor 1. Mol Cell Biol 27(7):2590–2600. doi: 10.1128/MCB.01742-06 PubMedCrossRefGoogle Scholar
  56. 56.
    Menendez D, Krysiak O, Inga A, Krysiak B, Resnick MA, Schonfelder G (2006) A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc Natl Acad Sci USA 103(5):1406–1411. doi: 10.1073/pnas.0508103103 PubMedCrossRefGoogle Scholar
  57. 57.
    Kruse JP, Gu W (2009) Modes of p53 regulation. Cell 137(4):609–622. doi: 10.1016/j.cell.2009.04.050 PubMedCrossRefGoogle Scholar
  58. 58.
    Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283. doi: 10.1038/nrm2147 PubMedCrossRefGoogle Scholar
  59. 59.
    Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P et al (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342(6250):705–708. doi: 10.1038/342705a0 PubMedCrossRefGoogle Scholar
  60. 60.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53PubMedCrossRefGoogle Scholar
  61. 61.
    de las Penas R, Sanchez-Ronco M, Alberola V, Taron M, Camps C, Garcia-Carbonero R, Massuti B, Queralt C, Botia M M, Garcia-Gomez R, Isla D, Cobo M, Santarpia M, Cecere F, Mendez P, Sanchez JJ, Rosell R (2006) Polymorphisms in DNA repair genes modulate survival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients. Ann Oncol 17(4):668–675. doi: 10.1093/annonc/mdj135 PubMedCrossRefGoogle Scholar
  62. 62.
    Huang XE, Hamajima N, Katsuda N, Matsuo K, Hirose K, Mizutani M, Iwata H, Miura S, Xiang J, Tokudome S, Tajima K (2003) Association of p53 codon Arg72Pro and p73 G4C14-to-A4T14 at exon 2 genetic polymorphisms with the risk of Japanese breast cancer. Breast Cancer 10(4):307–311PubMedCrossRefGoogle Scholar
  63. 63.
    Ma H, Hu Z, Zhai X, Wang S, Wang X, Qin J, Chen W, Jin G, Liu J, Gao J, Wei Q, Shen H (2006) Joint effects of single nucleotide polymorphisms in P53BP1 and p53 on breast cancer risk in a Chinese population. Carcinogenesis 27(4):766–771. doi: 10.1093/carcin/bgi295 PubMedCrossRefGoogle Scholar
  64. 64.
    He XF, Su J, Zhang Y, Huang X, Liu Y, Ding DP, Wang W, Arparkorn K (2011) Association between the p53 polymorphisms and breast cancer risk: meta-analysis based on case-control study. Breast Cancer Res Treat 130(2):517–529. doi: 10.1007/s10549-011-1583-2 PubMedCrossRefGoogle Scholar
  65. 65.
    Hu Z, Li X, Yuan R, Ring BZ, Su L (2010) Three common TP53 polymorphisms in susceptibility to breast cancer, evidence from meta-analysis. Breast Cancer Res Treat 120(3):705–714. doi: 10.1007/s10549-009-0488-9 PubMedCrossRefGoogle Scholar
  66. 66.
    Ma Y, Yang J, Liu Z, Zhang P, Yang Z, Wang Y, Qin H (2011) No significant association between the TP53 codon 72 polymorphism and breast cancer risk: a meta-analysis of 21 studies involving 24063 subjects. Breast Cancer Res Treat 125(1):201–205. doi: 10.1007/s10549-010-0920-1 PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang Z, Wang M, Wu D, Tong N, Tian Y (2010) P53 codon 72 polymorphism contributes to breast cancer risk: a meta-analysis based on 39 case-control studies. Breast Cancer Res Treat 120(2):509–517. doi: 10.1007/s10549-009-0480-4 PubMedCrossRefGoogle Scholar
  68. 68.
    Xu Y, Yao L, Ouyang T, Li J, Wang T, Fan Z, Lin B, Lu Y, Xie Y (2005) p53 Codon 72 polymorphism predicts the pathologic response to neoadjuvant chemotherapy in patients with breast cancer. Clin Cancer Res 11(20):7328–7333. doi: 10.1158/1078-0432.CCR-05-0507 PubMedCrossRefGoogle Scholar
  69. 69.
    Vannini I, Zoli W, Tesei A, Rosetti M, Sansone P, Storci G, Passardi A, Massa I, Ricci M, Gusolfino D, Fabbri F, Ulivi P, Brigliadori G, Amadori D, Bonafe M (2008) Role of p53 codon 72 arginine allele in cell survival in vitro and in the clinical outcome of patients with advanced breast cancer. Tumour Biol 29(3):145–151. doi: 10.1159/000143400 PubMedCrossRefGoogle Scholar
  70. 70.
    Moore JH, Williams SM (2002) New strategies for identifying gene–gene interactions in hypertension. Ann Med 34(2):88–95PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Patricia Rodrigues
    • 1
  • Jessica Furriol
    • 1
  • Eduardo Tormo
    • 1
  • Sandra Ballester
    • 1
  • Ana Lluch
    • 1
    • 2
  • Pilar Eroles
    • 1
  1. 1.Institute of Health Research INCLIVAValenciaSpain
  2. 2.Department of Haematology and Medical OncologyUniversity Hospital of ValenciaValenciaSpain

Personalised recommendations