Skip to main content
Log in

Suppression of atrial natriuretic peptide/natriuretic peptide receptor-A-mediated signaling upregulates angiotensin-II-induced collagen synthesis in adult cardiac fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac hormone atrial natriuretic peptide (ANP) and its receptor natriuretic peptide receptor-A (NPR-A) system acts as an intrinsic negative regulator of abnormal extracellular matrix (ECM) remodeling in the heart. However, the underlying mechanism by which ANP/NPR-A system opposes the ECM remodeling in the diseased heart is not well understood. Here, we investigated the anti-fibrotic mechanism of ANP/NPR-A in fibrotic agonist Angiotensin- II (ANG II)-treated adult cardiac fibroblast (CF) cells. Normal and NPR-A-suppressed adult CF cells were treated with ANG II (10−7 M) in the presence and absence of ANP (10−8 M) for 24 h. Total collagen concentration, activity and expression of MMP-2 and MMP-9, and nuclear translocation of Nuclear factor-kappaB (NF-κB-p50) were studied. NPR-A-suppressed adult CF cells exhibited a more pronounced increase in collagen production, ROS generation, and NF-κB-p50 nuclear translocation as compared to adult CF cells treated with agonist alone. ANP co-treatment significantly reverses the agonist-induced above changes in normal adult CF cells, while it failed to reverse the agonist-induced collagen synthesis in the NPR-A-suppressed adult CF cells. The cGMP analog (8-bromo-cGMP) treatment significantly attenuated the agonist-induced collagen synthesis both in normal and NPR-A-suppressed adult cells. The results of this study suggest that ANP/NPR-A signaling system antagonizes the agonist-induced collagen synthesis via suppressing the activities of MMP-2, MMP-9, ROS generation, and NF-κB nuclear translocation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Weber KT, Sun Y, Tyagi SC, Cleutjens JP (1994) Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. Am Heart J 116:1641–1646

    Article  Google Scholar 

  2. Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575

    Article  PubMed  CAS  Google Scholar 

  3. Anderson KR, Sutton MG, Lie JT (1979) Histopathological types of cardiac fibrosis in myocardial disease. J Pathol 128:79–85

    Article  PubMed  CAS  Google Scholar 

  4. Pandey KN (2005) Biology of natriuretic peptides and their receptors. Peptides 26:901–932

    Article  PubMed  CAS  Google Scholar 

  5. Vellaichamy E, Khurana ML, Fink J, Pandey KN (2005) Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylylcyclase/natriuretic peptide receptor A. J Biol Chem 280:19230–19242

    Article  PubMed  CAS  Google Scholar 

  6. Patel JB, Valencik ML, Pritchett AM, Burnett JC Jr, McDonald JA, Redfield MM (2005) Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol 289:777–784

    Article  Google Scholar 

  7. Kishimoto I, Tokudome T, Horio T, Garbers DL, Nakao K, Kangawa K (2009) Natriuretic peptide signaling via guanylyl cyclase (GC)-A: an endogenous protective mechanism of the heart. Curr Cardiol Rev 5:45–51

    Article  PubMed  CAS  Google Scholar 

  8. Franco V, Chen YF, Oparil S, Feng JA, Wang D, Hage F, Perry G (2004) Atrial natriuretic peptide dose-dependently inhibits pressure overload-induced cardiac remodeling. Hypertension 44:746–750

    Article  PubMed  CAS  Google Scholar 

  9. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci 94:14730–14735

    Article  PubMed  CAS  Google Scholar 

  10. Ellmers LJ, Knowles JW, Kim HS, Smithies O, Maeda N, Cameron VA (2002) Ventricular expression of natriuretic peptides in Npr1(-/-) mice with cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 283:H707–H714

    PubMed  CAS  Google Scholar 

  11. Tsuneyoshi H, Nishina T, Nomoto T, Kanemitsu H, Kawakami R, Unimonh O, Nishimura K, Komeda M (2004) Atrial natriuretic peptide helps prevent late remodeling after left ventricular aneurysm repair. Circulation 110:174–179

    Article  Google Scholar 

  12. Maki T, Horio T, Yoshihara F, Suga S, Takeo S, Matsuo H, Kangawa K (2000) Effect of neutral endopeptidase inhibitor on endogenous atrial natriuretic peptide as a paracrine factor in cultured cardiac fibroblasts. Br J Pharmacol 131:1204–1210

    Article  PubMed  CAS  Google Scholar 

  13. Fujisaki H, Ito H, Hirata Y, Tanaka M, Hata M, Lin M, Adachi S, Akimoto H, Marumo F, Hiroe M (1995) Natriuretic peptides inhibit angiotensin II induced proliferation of rat cardiac fibroblast by blocking endothelin-1 gene expression. J Clin Invest 96:1059–1065

    Article  PubMed  CAS  Google Scholar 

  14. Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG (2009) Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 84:209–217

    Article  PubMed  CAS  Google Scholar 

  15. Tripathi S, Pandey KN (2012) Guanylylcyclase/natriuretic peptide receptor-A signaling antagonizes the vascular endothelial growth factor-stimulated MAPKs and downstream effectors AP-1 and CREB in mouse mesangial cells. Mol Cell Biochem 368:47–59

    PubMed  CAS  Google Scholar 

  16. Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE (1997) Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res 35:158–167

    Article  PubMed  CAS  Google Scholar 

  17. Vellaichamy E, Khurana ML, Fink J, Pandey KN (2007) Enhanced activation of pro-inflammatory cytokines in mice lacking natriuretic peptide receptor-A. Peptides 28:893–899

    Article  PubMed  CAS  Google Scholar 

  18. Brilla CG, Zhou G, Matsubara L, Weber KT (1994) Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 26:809–820

    Article  PubMed  CAS  Google Scholar 

  19. Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47:711–717

    Google Scholar 

  20. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62

    Google Scholar 

  21. Kumar S, Seqqat R, Chigurupati S, Kumar R, Baker KM, Young D, Sen S, Gupta S (2011) Inhibition of nuclear factor κB regresses cardiac hypertrophy by modulating the expression of extracellular matrix and adhesion molecules. Free Radic Biol Med 50:206–215

    Article  PubMed  CAS  Google Scholar 

  22. Pathak M, Sarkar S, Vellaichamy E, Sen S (2001) Role of myocytes in myocardial collagen production. Hypertension 37:833–840

    Article  PubMed  CAS  Google Scholar 

  23. Bergman I, Loxley R (1963) Two improved and simplified methods for the spectrophotometric determination of hydroproline. Anal Chem 35:1961–1965

    Article  CAS  Google Scholar 

  24. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799

    Google Scholar 

  25. Xu J, Carretero OA, Liao TD, Peng H, Shesely EG, Xu J, Liu TS, Yang JJ, Reudelhuber TL, Yang XP (2010) Local angiotensin II aggravates cardiac remodeling in hypertension. Am J Physiol Heart Circ Physiol 299:1328–1338

    Google Scholar 

  26. Yasuda N, Akazawa H, Ito K, Shimizu I, Kudo-Sakamoto Y, Yabumoto C, Yano M, Yamamoto R, Ozasa Y, Minamino T, Naito AT, Oka T, Shiojima I, Tamura K, Umemura S, Paradis P, Nemer M, Komuro I (2012) Agonist-independent constitutive activity of angiotensin II receptor promotes cardiac remodeling in mice. Hypertension 59:627–633

    Article  PubMed  CAS  Google Scholar 

  27. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    Google Scholar 

  28. Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91:1103–1113

    Google Scholar 

  29. Tripathi S, Pandey KN (2012) Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes the vascular endothelial growth factor-stimulated MAPKs and downstream effectors AP-1 and CREB in mouse mesangial cells. Mol Cell Biochem 368:47–59

    Google Scholar 

  30. O’Tierney PF, Chattergoon NN, Louey S, Giraud GD, Thornburg KL (2010) Atrial natriuretic peptide inhibits angiotensin II-stimulated proliferation in fetal cardiomyocytes. J Physiol 1:2879–2889

    Google Scholar 

  31. Skelton WP 4th, Pi G, Lenz A, Sun Y, Vesely DL (2010) Cardiac hormones inhibit proliferation of pancreatic cancer but not normal cells. Eur J Clin Invest 40:706–712

    Article  PubMed  CAS  Google Scholar 

  32. Vesely BA, Song S, Sanchez-Ramos J, Fitz SR, Solivan SM, Gower WR Jr, Vesely DL (2005) Four peptide hormones decrease the number of human breast adenocarcinoma cells. Eur J Clin Invest 35:60–69

    Article  PubMed  CAS  Google Scholar 

  33. Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG (2009) Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 84:209–217

    Article  PubMed  CAS  Google Scholar 

  34. Abdelalim EM, Tooyama I (2011) NPR-A regulates self-renewal and pluripotency of embryonic stem cells. Cell Death Dis 2:e127

    Article  PubMed  CAS  Google Scholar 

  35. You H, Laychock SG (2009) Atrial natriuretic peptide promotes pancreatic islet beta-cell growth and Akt/Foxo1a/cyclin D2 signaling. Endocrinology 150:5455–5465

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Raulji P, Mohapatra SS, Patel R, Hellermann G, Kong X, Vera PL, Meyer-Siegler KL, Coppola D, Mohapatra S (2011) Natriuretic peptide receptor a as a novel target for prostate cancer. Mol Cancer 10:56

    Article  PubMed  Google Scholar 

  37. Lelièvre V, Pineau N, Hu Z, Ioffe Y, Byun JY, Muller JM, Waschek JA (2001) Proliferative actions of natriuretic peptides on neuroblastoma cells. Involvement of guanylyl cyclase and non-guanylyl cyclase pathways. J Biol Chem 276(47):43668–43676

    Article  PubMed  Google Scholar 

  38. Redondo J, Bishop JE, Wilkins MR (1998) Effect of atrial natriuretic peptide and cyclic GMP phosphodiesterase inhibition on collagen synthesis by adult cardiac fibroblasts. Br J Pharmacol 124:1455–1462

    Google Scholar 

  39. Tamamori M, Ito H, Hiroe M, Marumo F, Hata RI (1997) Stimulation of collagen synthesis in rat cardiac fibroblasts by exposure to hypoxic culture conditions and suppression of the effect by natriuretic peptides. Cell Biol Int 21:175–180

    Google Scholar 

  40. Weber KT, Sun Y, Katwa LC (1997) Myofibroblasts and local angiotensin II in rat cardiac tissue repair. Int J Biochem Cell Biol 29:31–42

    Article  PubMed  CAS  Google Scholar 

  41. Wang D, Oparil S, Feng JA, Li P, Perry G, Chen LB, Dai M, John SW, Chen YF (2003) Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42:88–95

    Article  PubMed  CAS  Google Scholar 

  42. Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107:975–984

    Article  PubMed  CAS  Google Scholar 

  43. Spinale FG, Gunasinghe H, Sprunger PD, Baskin JM, Bradham WC (2002) Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail 8:S332–S338

    Article  PubMed  CAS  Google Scholar 

  44. Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J (2004) Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 44:1609–1618

    Article  PubMed  CAS  Google Scholar 

  45. Maquart FX, Pickart L, Laurent M, Gillery P, Monboisse JC, Borel JP (1988) Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+. FEBS Lett 238:343–346

    Article  PubMed  CAS  Google Scholar 

  46. Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, Feldman AM (2000) Myocardial extracellular matrix remodeling in transgenic mice over expressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci 97:12746–12751

    Article  PubMed  CAS  Google Scholar 

  47. Wang M, Zhang J, Walker SJ, Dworakowski R, Lakatta EG, Shah AM (2010) Involvement of NADPH oxidase in age-associated cardiac remodeling. J Mol Cell Cardiol 48:765–772

    Article  PubMed  CAS  Google Scholar 

  48. Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584

    Article  PubMed  CAS  Google Scholar 

  49. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Article  PubMed  CAS  Google Scholar 

  50. Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R (2000) A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 87:26–32

    Article  PubMed  CAS  Google Scholar 

  51. Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826

    Article  PubMed  CAS  Google Scholar 

  52. Chen K, Chen J, Li D, Zhang X, Mehta JL (2004) Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension 44:655–661

    Article  PubMed  CAS  Google Scholar 

  53. Perez-Cruz I, Carcamo JM, Golde DW (2003) Vitamin C inhibits FAS-induced apoptosis in monocytes and U937 cells. Blood 102(1):336–343

    Article  PubMed  CAS  Google Scholar 

  54. Giftson JS, Jayanthi S, Nalini N (2010) Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs 28(3):251–259

    Article  PubMed  CAS  Google Scholar 

  55. Laskowski A, Woodman OL, Cao AH, Drummond GR, Marshall T, Kaye DM, Ritchie RH (2006) Antioxidant actions contribute to the antihypertrophic effects of atrial natriuretic peptide in neonatal rat cardiomyocytes. Cardiovasc Res 72:112–123

    Google Scholar 

  56. Poitevin S, Garnotel R, Antonicelli F, Gillery P, Nguyen P (2008) Type I collagen induces tissue factor expression and matrix metalloproteinase 9 production in human primary monocytes through a redox-sensitive pathway. J Thromb 6:1586–1594

    Article  CAS  Google Scholar 

  57. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  PubMed  CAS  Google Scholar 

  58. Kim JM, Heo HS, Choi YJ, Ye BH, Mi Ha Y, Seo AY, Yu BP, Leeuwenburgh C, Chung HY, Carter CS (2011) Inhibition of NF-κB-induced inflammatory responses by angiotensin II antagonists in aged rat kidney. Exp Gerontol 46:542–548

    Article  PubMed  CAS  Google Scholar 

  59. Yeh CB, Hsieh MJ, Hsieh YH, Chien MH, Chiou HL, Yang SF (2012) Antimetastatic effects of norcantharidin on hepatocellular carcinoma by transcriptional inhibition ofMMP-9 through modulation of NF-kB activity. PLoS ONE 7:31055

    Article  Google Scholar 

  60. Bond M, Chase AJ, Baker AH, Newby AC (2001) Inhibition of transcription factor nf-kappa b reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50:556–565

    Article  PubMed  CAS  Google Scholar 

  61. Gupta S, Purcell NH, Lin A, Sen S (2002) Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol 159:1019–1028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. EV greatly acknowledges Council of Scientific and Industrial Research (CSIR), and University grants commission (UGC), New Delhi, India for their research support. The authors are grateful to Dr. Ramamurthy, Director, National Centre for Ultrafast Processes, University of Madras, India, for her help in confocal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elangovan Vellaichamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parthasarathy, A., Gopi, V., Umadevi, S. et al. Suppression of atrial natriuretic peptide/natriuretic peptide receptor-A-mediated signaling upregulates angiotensin-II-induced collagen synthesis in adult cardiac fibroblasts. Mol Cell Biochem 378, 217–228 (2013). https://doi.org/10.1007/s11010-013-1612-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1612-z

Keywords

Navigation