Molecular and Cellular Biochemistry

, Volume 378, Issue 1–2, pp 217–228 | Cite as

Suppression of atrial natriuretic peptide/natriuretic peptide receptor-A-mediated signaling upregulates angiotensin-II-induced collagen synthesis in adult cardiac fibroblasts

  • Arumugam Parthasarathy
  • Venkatachalam Gopi
  • Subramanian Umadevi
  • Anoop Simna
  • Mohammed Jainuddin Yousuf Sheik
  • H. Divya
  • Elangovan Vellaichamy


Cardiac hormone atrial natriuretic peptide (ANP) and its receptor natriuretic peptide receptor-A (NPR-A) system acts as an intrinsic negative regulator of abnormal extracellular matrix (ECM) remodeling in the heart. However, the underlying mechanism by which ANP/NPR-A system opposes the ECM remodeling in the diseased heart is not well understood. Here, we investigated the anti-fibrotic mechanism of ANP/NPR-A in fibrotic agonist Angiotensin- II (ANG II)-treated adult cardiac fibroblast (CF) cells. Normal and NPR-A-suppressed adult CF cells were treated with ANG II (10−7 M) in the presence and absence of ANP (10−8 M) for 24 h. Total collagen concentration, activity and expression of MMP-2 and MMP-9, and nuclear translocation of Nuclear factor-kappaB (NF-κB-p50) were studied. NPR-A-suppressed adult CF cells exhibited a more pronounced increase in collagen production, ROS generation, and NF-κB-p50 nuclear translocation as compared to adult CF cells treated with agonist alone. ANP co-treatment significantly reverses the agonist-induced above changes in normal adult CF cells, while it failed to reverse the agonist-induced collagen synthesis in the NPR-A-suppressed adult CF cells. The cGMP analog (8-bromo-cGMP) treatment significantly attenuated the agonist-induced collagen synthesis both in normal and NPR-A-suppressed adult cells. The results of this study suggest that ANP/NPR-A signaling system antagonizes the agonist-induced collagen synthesis via suppressing the activities of MMP-2, MMP-9, ROS generation, and NF-κB nuclear translocation mechanism.


Atrial natriuretic peptide Natriuretic peptide receptor-A Angiotensin-II Extracellular matrix Matrix metallo proteinases 



Dr. EV greatly acknowledges Council of Scientific and Industrial Research (CSIR), and University grants commission (UGC), New Delhi, India for their research support. The authors are grateful to Dr. Ramamurthy, Director, National Centre for Ultrafast Processes, University of Madras, India, for her help in confocal analysis.


  1. 1.
    Weber KT, Sun Y, Tyagi SC, Cleutjens JP (1994) Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. Am Heart J 116:1641–1646CrossRefGoogle Scholar
  2. 2.
    Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117:568–575PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson KR, Sutton MG, Lie JT (1979) Histopathological types of cardiac fibrosis in myocardial disease. J Pathol 128:79–85PubMedCrossRefGoogle Scholar
  4. 4.
    Pandey KN (2005) Biology of natriuretic peptides and their receptors. Peptides 26:901–932PubMedCrossRefGoogle Scholar
  5. 5.
    Vellaichamy E, Khurana ML, Fink J, Pandey KN (2005) Involvement of the NF-kappa B/matrix metalloproteinase pathway in cardiac fibrosis of mice lacking guanylylcyclase/natriuretic peptide receptor A. J Biol Chem 280:19230–19242PubMedCrossRefGoogle Scholar
  6. 6.
    Patel JB, Valencik ML, Pritchett AM, Burnett JC Jr, McDonald JA, Redfield MM (2005) Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol 289:777–784CrossRefGoogle Scholar
  7. 7.
    Kishimoto I, Tokudome T, Horio T, Garbers DL, Nakao K, Kangawa K (2009) Natriuretic peptide signaling via guanylyl cyclase (GC)-A: an endogenous protective mechanism of the heart. Curr Cardiol Rev 5:45–51PubMedCrossRefGoogle Scholar
  8. 8.
    Franco V, Chen YF, Oparil S, Feng JA, Wang D, Hage F, Perry G (2004) Atrial natriuretic peptide dose-dependently inhibits pressure overload-induced cardiac remodeling. Hypertension 44:746–750PubMedCrossRefGoogle Scholar
  9. 9.
    Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci 94:14730–14735PubMedCrossRefGoogle Scholar
  10. 10.
    Ellmers LJ, Knowles JW, Kim HS, Smithies O, Maeda N, Cameron VA (2002) Ventricular expression of natriuretic peptides in Npr1(-/-) mice with cardiac hypertrophy and fibrosis. Am J Physiol Heart Circ Physiol 283:H707–H714PubMedGoogle Scholar
  11. 11.
    Tsuneyoshi H, Nishina T, Nomoto T, Kanemitsu H, Kawakami R, Unimonh O, Nishimura K, Komeda M (2004) Atrial natriuretic peptide helps prevent late remodeling after left ventricular aneurysm repair. Circulation 110:174–179CrossRefGoogle Scholar
  12. 12.
    Maki T, Horio T, Yoshihara F, Suga S, Takeo S, Matsuo H, Kangawa K (2000) Effect of neutral endopeptidase inhibitor on endogenous atrial natriuretic peptide as a paracrine factor in cultured cardiac fibroblasts. Br J Pharmacol 131:1204–1210PubMedCrossRefGoogle Scholar
  13. 13.
    Fujisaki H, Ito H, Hirata Y, Tanaka M, Hata M, Lin M, Adachi S, Akimoto H, Marumo F, Hiroe M (1995) Natriuretic peptides inhibit angiotensin II induced proliferation of rat cardiac fibroblast by blocking endothelin-1 gene expression. J Clin Invest 96:1059–1065PubMedCrossRefGoogle Scholar
  14. 14.
    Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG (2009) Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 84:209–217PubMedCrossRefGoogle Scholar
  15. 15.
    Tripathi S, Pandey KN (2012) Guanylylcyclase/natriuretic peptide receptor-A signaling antagonizes the vascular endothelial growth factor-stimulated MAPKs and downstream effectors AP-1 and CREB in mouse mesangial cells. Mol Cell Biochem 368:47–59PubMedGoogle Scholar
  16. 16.
    Hutchinson HG, Trindade PT, Cunanan DB, Wu CF, Pratt RE (1997) Mechanisms of natriuretic-peptide-induced growth inhibition of vascular smooth muscle cells. Cardiovasc Res 35:158–167PubMedCrossRefGoogle Scholar
  17. 17.
    Vellaichamy E, Khurana ML, Fink J, Pandey KN (2007) Enhanced activation of pro-inflammatory cytokines in mice lacking natriuretic peptide receptor-A. Peptides 28:893–899PubMedCrossRefGoogle Scholar
  18. 18.
    Brilla CG, Zhou G, Matsubara L, Weber KT (1994) Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 26:809–820PubMedCrossRefGoogle Scholar
  19. 19.
    Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47:711–717Google Scholar
  20. 20.
    Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62Google Scholar
  21. 21.
    Kumar S, Seqqat R, Chigurupati S, Kumar R, Baker KM, Young D, Sen S, Gupta S (2011) Inhibition of nuclear factor κB regresses cardiac hypertrophy by modulating the expression of extracellular matrix and adhesion molecules. Free Radic Biol Med 50:206–215PubMedCrossRefGoogle Scholar
  22. 22.
    Pathak M, Sarkar S, Vellaichamy E, Sen S (2001) Role of myocytes in myocardial collagen production. Hypertension 37:833–840PubMedCrossRefGoogle Scholar
  23. 23.
    Bergman I, Loxley R (1963) Two improved and simplified methods for the spectrophotometric determination of hydroproline. Anal Chem 35:1961–1965CrossRefGoogle Scholar
  24. 24.
    Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799Google Scholar
  25. 25.
    Xu J, Carretero OA, Liao TD, Peng H, Shesely EG, Xu J, Liu TS, Yang JJ, Reudelhuber TL, Yang XP (2010) Local angiotensin II aggravates cardiac remodeling in hypertension. Am J Physiol Heart Circ Physiol 299:1328–1338Google Scholar
  26. 26.
    Yasuda N, Akazawa H, Ito K, Shimizu I, Kudo-Sakamoto Y, Yabumoto C, Yano M, Yamamoto R, Ozasa Y, Minamino T, Naito AT, Oka T, Shiojima I, Tamura K, Umemura S, Paradis P, Nemer M, Komuro I (2012) Agonist-independent constitutive activity of angiotensin II receptor promotes cardiac remodeling in mice. Hypertension 59:627–633PubMedCrossRefGoogle Scholar
  27. 27.
    Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278Google Scholar
  28. 28.
    Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91:1103–1113Google Scholar
  29. 29.
    Tripathi S, Pandey KN (2012) Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes the vascular endothelial growth factor-stimulated MAPKs and downstream effectors AP-1 and CREB in mouse mesangial cells. Mol Cell Biochem 368:47–59Google Scholar
  30. 30.
    O’Tierney PF, Chattergoon NN, Louey S, Giraud GD, Thornburg KL (2010) Atrial natriuretic peptide inhibits angiotensin II-stimulated proliferation in fetal cardiomyocytes. J Physiol 1:2879–2889Google Scholar
  31. 31.
    Skelton WP 4th, Pi G, Lenz A, Sun Y, Vesely DL (2010) Cardiac hormones inhibit proliferation of pancreatic cancer but not normal cells. Eur J Clin Invest 40:706–712PubMedCrossRefGoogle Scholar
  32. 32.
    Vesely BA, Song S, Sanchez-Ramos J, Fitz SR, Solivan SM, Gower WR Jr, Vesely DL (2005) Four peptide hormones decrease the number of human breast adenocarcinoma cells. Eur J Clin Invest 35:60–69PubMedCrossRefGoogle Scholar
  33. 33.
    Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG (2009) Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 84:209–217PubMedCrossRefGoogle Scholar
  34. 34.
    Abdelalim EM, Tooyama I (2011) NPR-A regulates self-renewal and pluripotency of embryonic stem cells. Cell Death Dis 2:e127PubMedCrossRefGoogle Scholar
  35. 35.
    You H, Laychock SG (2009) Atrial natriuretic peptide promotes pancreatic islet beta-cell growth and Akt/Foxo1a/cyclin D2 signaling. Endocrinology 150:5455–5465PubMedCrossRefGoogle Scholar
  36. 36.
    Wang X, Raulji P, Mohapatra SS, Patel R, Hellermann G, Kong X, Vera PL, Meyer-Siegler KL, Coppola D, Mohapatra S (2011) Natriuretic peptide receptor a as a novel target for prostate cancer. Mol Cancer 10:56PubMedCrossRefGoogle Scholar
  37. 37.
    Lelièvre V, Pineau N, Hu Z, Ioffe Y, Byun JY, Muller JM, Waschek JA (2001) Proliferative actions of natriuretic peptides on neuroblastoma cells. Involvement of guanylyl cyclase and non-guanylyl cyclase pathways. J Biol Chem 276(47):43668–43676PubMedCrossRefGoogle Scholar
  38. 38.
    Redondo J, Bishop JE, Wilkins MR (1998) Effect of atrial natriuretic peptide and cyclic GMP phosphodiesterase inhibition on collagen synthesis by adult cardiac fibroblasts. Br J Pharmacol 124:1455–1462Google Scholar
  39. 39.
    Tamamori M, Ito H, Hiroe M, Marumo F, Hata RI (1997) Stimulation of collagen synthesis in rat cardiac fibroblasts by exposure to hypoxic culture conditions and suppression of the effect by natriuretic peptides. Cell Biol Int 21:175–180Google Scholar
  40. 40.
    Weber KT, Sun Y, Katwa LC (1997) Myofibroblasts and local angiotensin II in rat cardiac tissue repair. Int J Biochem Cell Biol 29:31–42PubMedCrossRefGoogle Scholar
  41. 41.
    Wang D, Oparil S, Feng JA, Li P, Perry G, Chen LB, Dai M, John SW, Chen YF (2003) Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42:88–95PubMedCrossRefGoogle Scholar
  42. 42.
    Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N (2001) Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest 107:975–984PubMedCrossRefGoogle Scholar
  43. 43.
    Spinale FG, Gunasinghe H, Sprunger PD, Baskin JM, Bradham WC (2002) Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail 8:S332–S338PubMedCrossRefGoogle Scholar
  44. 44.
    Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J (2004) Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 44:1609–1618PubMedCrossRefGoogle Scholar
  45. 45.
    Maquart FX, Pickart L, Laurent M, Gillery P, Monboisse JC, Borel JP (1988) Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+. FEBS Lett 238:343–346PubMedCrossRefGoogle Scholar
  46. 46.
    Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, Feldman AM (2000) Myocardial extracellular matrix remodeling in transgenic mice over expressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci 97:12746–12751PubMedCrossRefGoogle Scholar
  47. 47.
    Wang M, Zhang J, Walker SJ, Dworakowski R, Lakatta EG, Shah AM (2010) Involvement of NADPH oxidase in age-associated cardiac remodeling. J Mol Cell Cardiol 48:765–772PubMedCrossRefGoogle Scholar
  48. 48.
    Santiago JJ, Dangerfield AL, Rattan SG, Bathe KL, Cunnington RH, Raizman JE, Bedosky KM, Freed DH, Kardami E, Dixon IM (2010) Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn 239:1573–1584PubMedCrossRefGoogle Scholar
  49. 49.
    Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148PubMedCrossRefGoogle Scholar
  50. 50.
    Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R (2000) A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 87:26–32PubMedCrossRefGoogle Scholar
  51. 51.
    Grieve DJ, Byrne JA, Siva A, Layland J, Johar S, Cave AC, Shah AM (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826PubMedCrossRefGoogle Scholar
  52. 52.
    Chen K, Chen J, Li D, Zhang X, Mehta JL (2004) Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension 44:655–661PubMedCrossRefGoogle Scholar
  53. 53.
    Perez-Cruz I, Carcamo JM, Golde DW (2003) Vitamin C inhibits FAS-induced apoptosis in monocytes and U937 cells. Blood 102(1):336–343PubMedCrossRefGoogle Scholar
  54. 54.
    Giftson JS, Jayanthi S, Nalini N (2010) Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs 28(3):251–259PubMedCrossRefGoogle Scholar
  55. 55.
    Laskowski A, Woodman OL, Cao AH, Drummond GR, Marshall T, Kaye DM, Ritchie RH (2006) Antioxidant actions contribute to the antihypertrophic effects of atrial natriuretic peptide in neonatal rat cardiomyocytes. Cardiovasc Res 72:112–123Google Scholar
  56. 56.
    Poitevin S, Garnotel R, Antonicelli F, Gillery P, Nguyen P (2008) Type I collagen induces tissue factor expression and matrix metalloproteinase 9 production in human primary monocytes through a redox-sensitive pathway. J Thromb 6:1586–1594CrossRefGoogle Scholar
  57. 57.
    Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285PubMedCrossRefGoogle Scholar
  58. 58.
    Kim JM, Heo HS, Choi YJ, Ye BH, Mi Ha Y, Seo AY, Yu BP, Leeuwenburgh C, Chung HY, Carter CS (2011) Inhibition of NF-κB-induced inflammatory responses by angiotensin II antagonists in aged rat kidney. Exp Gerontol 46:542–548PubMedCrossRefGoogle Scholar
  59. 59.
    Yeh CB, Hsieh MJ, Hsieh YH, Chien MH, Chiou HL, Yang SF (2012) Antimetastatic effects of norcantharidin on hepatocellular carcinoma by transcriptional inhibition ofMMP-9 through modulation of NF-kB activity. PLoS ONE 7:31055CrossRefGoogle Scholar
  60. 60.
    Bond M, Chase AJ, Baker AH, Newby AC (2001) Inhibition of transcription factor nf-kappa b reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50:556–565PubMedCrossRefGoogle Scholar
  61. 61.
    Gupta S, Purcell NH, Lin A, Sen S (2002) Activation of nuclear factor-kappaB is necessary for myotrophin-induced cardiac hypertrophy. J Cell Biol 159:1019–1028PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Arumugam Parthasarathy
    • 1
  • Venkatachalam Gopi
    • 1
  • Subramanian Umadevi
    • 1
  • Anoop Simna
    • 1
  • Mohammed Jainuddin Yousuf Sheik
    • 1
  • H. Divya
    • 1
  • Elangovan Vellaichamy
    • 1
  1. 1.Department of BiochemistryUniversity of MadrasChennaiIndia

Personalised recommendations