Molecular and Cellular Biochemistry

, Volume 372, Issue 1–2, pp 27–33 | Cite as

Association between polymorphisms of XRCC1 and ADPRT genes and ovarian cancer survival with platinum-based chemotherapy in Chinese population

  • Kai Li
  • Wusheng Li


The role of DNA repair gene polymorphisms in cancer development, progression, and response to treatment has received increased attention. We conducted a prospective study to determine whether associations exist between two polymorphisms in XRCC1 and ADPRT and the outcomes of Chinese ovarian cancer patients treated with platinum-based chemotherapy. A total of 335 new cases of ovarian cancer were consecutively collected between May 2005 and May 2007. Follow-up lasted for 4 years, and the outcome measure was survival time. Individuals carrying XRCC1 194Trp/Trp had a longer survival time than did those with the Arg/Arg genotype. Similarly, those carrying XRCC1 399 Gln/Gln genotypes had 0.44-fold the risk of death than those with the Arg/Arg genotype. The combination of XRCC1 194 Trp allele and 399 Gln allele could decrease the death risk of ovarian cancer. In summary, this study is the first to evaluate the associations between polymorphisms in DNA repair gene polymorphism and the risk of ovarian cancer in Chinese population. Our study found a significant association between XRCC1 Arg399Gln and XRCC1 Arg194Trp polymorphism and the clinical outcome of ovarian cancer. Furthermore, studies with larger sample sizes are still needed to confirm these associations in Chinese population.


Ovarian cancer XRCC1 ADPRT Polymorphism Chinese population 



We thank the Chinese Medical Sciences University for the great help provided by its staff. This study was supported by the Natural Science Foundation of Tianjin (08JCYBJC05500).

Conflict of Interest

The authors report no conflicts of interest.


  1. 1.
    Ries LAG, Young JL, Keel GE et al (2007) SEER program, NIH Pub. No. 07-6215. National Cancer Institute, BethesdaGoogle Scholar
  2. 2.
    Jin F, Shu XO, Devesa SS, Zheng W, Blot WJ, Gao YT (1993) Incidence trends for cancers of the breast, ovary, and corpus uteri in urban Shanghai, 1972–89. Cancer Causes Control 4:355–360. doi: 10.1007/bf00051338 PubMedCrossRefGoogle Scholar
  3. 3.
    Hogberg T, Glimelius B, Nygren P (2001) A systematic overview of chemotherapy effects in ovarian cancer. Acta Oncol 40:340–360PubMedCrossRefGoogle Scholar
  4. 4.
    Qiao Y, Spitz MR, Shen H, Guo Z, Shete S, Hedayati M, Grossman L, Mohrenweiser H, Wei Q (2002) Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 23:295–299. doi: 10.1093/carcin/23.2.295 PubMedCrossRefGoogle Scholar
  5. 5.
    Kudo K, Gavin E, Das S, Amable L, Shevde LA, Reed E (2012) Inhibition of Gli1 results in altered c-Jun activation, inhibition of cisplatin-induced upregulation of ERCC1, XPD and XRCC1, and inhibition of platinum–DNA adduct repair. Oncogene. doi: 10.1038/onc.2011.610
  6. 6.
    Kang J, D’Andrea AD, Kozono D (2012) A DNA repair pathway-focused score for prediction of outcomes in ovarian cancer treated with platinum-based chemotherapy. J Natl Cancer Inst 204:670–681CrossRefGoogle Scholar
  7. 7.
    Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18:3563–3571PubMedGoogle Scholar
  8. 8.
    Keith WC (2003) XRCC1 and DNA strand break repair. DNA Repair 2:955–969CrossRefGoogle Scholar
  9. 9.
    Takabatake R, Koiwa T, Kasahara M, Takashima K, Futo S, Minegishi Y, Akiyama H, Teshima R, Oguchi T, Mano J, Furui S, Kitta K (2011) Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize. Shokuhin Eiseigaku Zasshi 52:265–269. doi: org/10.3358/shokueishi.52.265
  10. 10.
    Aneiros E, Dabrowski M (2009) Novel temperature activation cell-based assay on thermo-TRP ion channels. J Biomol Screen 14:662–667. doi: 10.1177/1087057109336595 Google Scholar
  11. 11.
    Oguchi T, Onishi M, Minegishi Y, Kurosawa Y, Kasahara M, Akiyama H, Teshima R, Futo S, Furui S, Hino A, Kitta K (2009) Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize. Shokuhin Eiseigaku Zasshi 50:117–125. doi: org/10.3358/shokueishi.50.117
  12. 12.
    Shirota Y, Stoehlmacher J, Brabender J et al (2001) ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 19:4298–4304PubMedGoogle Scholar
  13. 13.
    Britten RA, Liu D, Tessier A, Hutchison MJ, Murray D (2000) ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. Int J Cancer 89:453–457. doi: 10.1002/1097-0215(20000920)89:5<453:AID-IJC9>3.3.CO;2-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Lord RVN, Brabender J, Gandara D et al (2002) Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non small cell lung cancer. Clin Cancer Res 8:2286–2291PubMedGoogle Scholar
  15. 15.
    Krivak TC, Darcy KM, Tian C et al (2011) Single nucleotide polymorphisms in ERCC1 are associated with disease progression and survival in patients with advanced stage ovarian and primary peritoneal carcinoma: a gynecologic oncology group study. Gynecol Oncol 122:121–126. doi: 10.1016/j.ygyno.2011.03.027 PubMedCrossRefGoogle Scholar
  16. 16.
    Brem R, Hall J (2005) XRCC1 is required for DNA single-strand break repair in human cells. Nucleic Acids Res 33:2512–2520. doi: 10.1093/nar/gki543 PubMedCrossRefGoogle Scholar
  17. 17.
    Nazarkina ZK, Khodyreva SN, Marsin S, Lavrik OI, Radicella JP (2007) XRCC1 interactions with base excision repair DNA intermediates. DNA Repair (Amst) 6:254–264. doi: 10.1016/j.dnarep.2006.10.002 CrossRefGoogle Scholar
  18. 18.
    Savas S, Kim DY, Ahmad MF, Shariff M, Ozcelik H (2004) Identifying functional genetic variants in DNA repair pathway using protein conservation analysis. Cancer Epidemiol Biomarkers Prev 13:801–807PubMedGoogle Scholar
  19. 19.
    Wu K, Su D, Lin K, Luo J, Au WW (2011) XRCC1 Arg399Gln gene polymorphism and breast cancer risk: a meta-analysis based on case–control studies. Asian Pac J Cancer Prev 12:2237–2243. doi: 10.1002/ijc.24446 PubMedGoogle Scholar
  20. 20.
    Kiyohara C, Takayama K, Nakanishi Y (2006) Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer 54:267–283. doi: 10.1016/j.lungcan.2006.08.009 PubMedCrossRefGoogle Scholar
  21. 21.
    Stern MC, Siegmund KD, Conti DV, Corral R, Haile RW (2006) XRCC1, XRCC3, and XPD polymorphisms as modifiers of the effect of smoking and alcohol on colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 15:2384–2390. doi: 10.1158/1055-9965.EPI-06-0381 PubMedCrossRefGoogle Scholar
  22. 22.
    Huang WY, Chow WH, Rothman N, Lissowska J, Llaca V, Yeager M, Zatonski W, Hayes RB (2005) Selected DNA repair polymorphisms and gastric cancer in Poland. Carcinogenesis 26:1354–1359. doi: 10.1093/carcin/bgi084 PubMedCrossRefGoogle Scholar
  23. 23.
    Hirata H, Hinoda Y, Tanaka Y et al (2007) Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer 43:231–237. doi: 10.1016/j.ejca.2006.11.005 PubMedCrossRefGoogle Scholar
  24. 24.
    Hsieh YY, Chang CC, Chen SY, Chen CP, Lin WH, Tsai FJ (2012) XRCC1 399 Arg-related genotype and allele, but not XRCC1 His107Arg, XRCC1 Trp194Arg, KCNQ2, AT1R, and hOGG1 polymorphisms, are associated with higher susceptibility of endometriosis. Gynecol Endocrinol 28:305–309PubMedCrossRefGoogle Scholar
  25. 25.
    Fard-Esfahani P, Fard-Esfahani A, Fayaz S et al (2011) Association of Arg194Trp, Arg280His, and Arg399Gln polymorphisms in X-ray repair cross-complementing group 1 gene and risk of differentiated thyroid carcinoma in Iran. Iran Biomed J 15:73–78PubMedGoogle Scholar
  26. 26.
    Xu C, Wang X, Zhang Y, Li L (2011) Effect of the XRCC1 and XRCC3 genetic polymorphisms on the efficacy of platinum-based chemotherapy in patients with advanced non small cell lung cancer. Zhongguo Fei Ai Za Zhi 14:912–917PubMedGoogle Scholar
  27. 27.
    Saadat M, Mohammadynejad P, Ghanizadeh A, Saadat I (2012) Genetic polymorphisms (at codons 194 and 399) in the DNA repair gene XRCC1 and susceptibility to bipolar disorder. Psychiatry Res. doi: 10.1016/j.psychres.2012.01.021
  28. 28.
    Suh KW, Kim JH, Kim do Y, Kim YB, Lee C, Choi S (2006) Which gene is a dominant predictor of response during FOLFOX chemotherapy for the treatment of metastatic colorectal cancer: the MTHFR or XRCC1 gene? Ann Surg Oncol 13:1379–1385PubMedCrossRefGoogle Scholar
  29. 29.
    de las Peña R, Sanchez-Ronco M, Alberola V et al (2006) Spanish lung cancer group. Polymorphisms in DNA repair genes modulate survival in cisplatin/gemcitabine-treated non small cell lung cancer patients. Ann Oncol 17:668–675. doi: 10.1093/annonc/mdj135 CrossRefGoogle Scholar
  30. 30.
    Bewick MA, Conlon MS, Lafrenie RM (2006) Polymorphisms in XRCC1, XRCC3, and CCND1 and survival after treatment for metastatic breast cancer. J Clin Oncol 24:5645–5651. doi: 10.1200/jco.2006.05.9923 PubMedCrossRefGoogle Scholar
  31. 31.
    Wu X, Gu J, Wu TT et al (2006) Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J Clin Oncol 4:3789–3798. doi: 10.1200/JCO.2005.03.6640 CrossRefGoogle Scholar
  32. 32.
    Khrunin AV, Moisseev A, Gorbunova V, Limborska S (2010) Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J 10:54–61. doi: 10.1038/tpj.2009.45 PubMedCrossRefGoogle Scholar
  33. 33.
    Kim HS, Kim MK, Chung HH, Kim JW, Park NH, Song YS, Kang SB (2009) Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study. Gynecol Oncol 113:264–269. doi: 10.1016/j.ygyno.2009.01.002 PubMedCrossRefGoogle Scholar
  34. 34.
    Godoy H, Mhawech-Fauceglia P, Beck A, Miller A, Lele S, Odunsi K (2011) Expression of poly (adenosine diphosphate-ribose) polymerase and p53 in epithelial ovarian cancer and their role in prognosis and disease outcome. Int J Gynecol Pathol 30:139–144. doi: 10.1097/PGP.0b013e3181fa5a64 PubMedCrossRefGoogle Scholar
  35. 35.
    Huehls AM, Wagner JM, Huntoon CJ, Geng L, Erlichman C, Patel AG, Kaufmann SH, Karnitz LM (2011) Poly(ADP-ribose) polymerase inhibition synergizes with 5-fluorodeoxyuridine but not 5-fluorouracil in ovarian cancer cells. Cancer Res 71:4944–4954PubMedCrossRefGoogle Scholar
  36. 36.
    Weil MK, Chen AP (2011) PARP inhibitor treatment in ovarian and breast cancer. Curr Probl Cancer 35:7–50. doi: 10.1016/j.currproblcancer.2010.12.002 PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang X, Miao X, Liang G, Hao B, Wang Y, Tan W, Li Y, Guo Y, He F, Wei Q, Lin D (2005) Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer. Cancer Res 65:722–726PubMedGoogle Scholar
  38. 38.
    Smith SJ, Long A, Barrow JH, Macarthur DC, Coyle B, Grundy RG, Children’s Cancer and Leukemia Group Biological Studies Committee (2011) Pediatric high-grade glioma: identification of poly(ADP-ribose) polymerase as a potential therapeutic target. Neuro Oncol 13:1171–1177PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang Z, Miao XP, Tan W, Guo YL, Zhang XM, Lin DX (2006) Correlation of genetic polymorphisms in DNA repair genes ADPRT and XRCC1 to risk of gastric cancer. Chinese J Canc 25:7–10Google Scholar
  40. 40.
    Smith TR, Liu-Mares W, Van Emburgh BO et al (2011) Genetic polymorphisms of multiple DNA repair pathways impact age at diagnosis and TP53 mutations in breast cancer. Carcinogenesis 32:1354–1360. doi: 10.1093/carcin/bgr117 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of Gynecologic CancerShengjing Hospital of China Medical UniversityShenyangChina

Personalised recommendations