Molecular and Cellular Biochemistry

, Volume 371, Issue 1–2, pp 137–146 | Cite as

Interleukin-22 protects rat PC12 pheochromocytoma cells from serum deprivation-induced cell death

  • Yongchun Liu
  • Wenyan Pan
  • Shengmei Yang
  • Xiaoying Wu
  • Jianfu Wu
  • Jun Ma
  • Zengqiang Yuan
  • Songshu Meng


Interleukin-22 (IL-22), an IL-10 family cytokine, mediates the crosstalk between leukocytes and epithelial cells. Previous studies reported that IL-22 expresses in mouse brain, and the rat PC12 cells are responsive to IL-22 stimulation. However, the biological roles of IL-22 in neuronal cells remain largely unknown. We show here that IL-22 activates Stat3, p38 mitogen-activated protein kinases (MAPK), and Akt pathways and inhibits Erk/MAPK pathway in naïve PC12 cells. We further demonstrate that IL-22 protects naïve PC12 cells from serum starvation-induced cell death via the Jak1/Stat3 and Akt pathways. We also show that IL-22 has no effects on naïve PC12 cell proliferation and cannot protect naïve PC12 cells from 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity. However, IL-22 exerts a dose-dependent protective effect on MPP+-induced neurodegeneration in nerve growth factor-differentiated PC12 cells. Overall, our data suggest that IL-22 might play a role in neurological processes. To our knowledge, this is the first report showing that IL-22 confers a neuroprotective function, which may provide a new therapeutic option for treatment of neurodegenerative diseases.


Interleukin-22 (IL-22) PC12 cell Neurodegeneration Cell survival 





Dulbecco’s modified Eagle’s medium


Fetal bovine serum


Growth-associated protein 43


Horse serum






Mitogen-activated protein kinases






3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


Nerve growth factor





This work was supported by the National Science Foundation of China (30870792 and 81030025).


  1. 1.
    Zenewicz LA, Flavell RA (2011) Recent advances in IL-22 biology. Int Immunol 23(3):159–163PubMedCrossRefGoogle Scholar
  2. 2.
    Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD, Gurney AL (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275(40):31335–31339PubMedCrossRefGoogle Scholar
  3. 3.
    Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, Pestka S (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166(12):7096–7103PubMedGoogle Scholar
  4. 4.
    Aggarwal S, Xie MH, Maruoka M, Foster J, Gurney AL (2001) Acinar cells of the pancreas are a target of interleukin-22. J Interferon Cytokine Res 21(12):1047–1053PubMedCrossRefGoogle Scholar
  5. 5.
    Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21(2):241–254PubMedCrossRefGoogle Scholar
  6. 6.
    Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC (2002) Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 277(37):33676–33682PubMedCrossRefGoogle Scholar
  7. 7.
    Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F (2005) IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 174(6):3695–3702PubMedGoogle Scholar
  8. 8.
    Brand S, Beigel F, Olszak T, Zitzmann K, Eichhorst ST, Otte JM, Diepolder H, Marquardt A, Jagla W, Popp A, Leclair S, Herrmann K, Seiderer J, Ochsenkuhn T, Goke B, Auernhammer CJ, Dambacher J (2006) IL-22 is increased in active Crohn’s disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am J Physiol Gastrointest Liver Physiol 290(4):G827–G838PubMedCrossRefGoogle Scholar
  9. 9.
    Meng S, Gui Q, Xu Q, Lu K, Jiao X, Fan J, Ge B, Ke Y, Zhang S, Wu J, Wang C (2010) Association of Shp2 with phosphorylated IL-22R1 is required for interleukin-22-induced MAP kinase activation. J Mol Cell Biol 2(4):223–230PubMedCrossRefGoogle Scholar
  10. 10.
    Aujla SJ, Kolls JK (2009) IL-22: a critical mediator in mucosal host defense. J Mol Med (Berl) 87(5):451–454CrossRefGoogle Scholar
  11. 11.
    Ouyang W (2010) Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease. Cytokine Growth Factor Rev 21(6):435–441PubMedCrossRefGoogle Scholar
  12. 12.
    Andoh A, Zhang Z, Inatomi O, Fujino S, Deguchi Y, Araki Y, Tsujikawa T, Kitoh K, Kim-Mitsuyama S, Takayanagi A, Shimizu N, Fujiyama Y (2005) Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology 129(3):969–984PubMedCrossRefGoogle Scholar
  13. 13.
    Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K, Nojima Y (2005) Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum 52(4):1037–1046PubMedCrossRefGoogle Scholar
  14. 14.
    Dumoutier L, Louahed J, Renauld JC (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164(4):1814–1819PubMedGoogle Scholar
  15. 15.
    Levillayer F, Mas M, Levi-Acobas F, Brahic M, Bureau JF (2007) Interleukin 22 is a candidate gene for Tmevp3, a locus controlling Theiler’s virus-induced neurological diseases. Genetics 176(3):1835–1844PubMedCrossRefGoogle Scholar
  16. 16.
    Thessen Hedreul M, Gillett A, Olsson T, Jagodic M, Harris RA (2009) Characterization of Multiple Sclerosis candidate gene expression kinetics in rat experimental autoimmune encephalomyelitis. J Neuroimmunol 210(1–2):30–39PubMedCrossRefGoogle Scholar
  17. 17.
    Almolda B, Costa M, Montoya M, Gonzalez B, Castellano B (2011) Increase in Th17 and T-reg lymphocytes and decrease of IL22 correlate with the recovery phase of acute EAE in rat. PLoS ONE 6(11):e27473PubMedCrossRefGoogle Scholar
  18. 18.
    Beyeen AD, Adzemovic MZ, Ockinger J, Stridh P, Becanovic K, Laaksonen H, Lassmann H, Harris RA, Hillert J, Alfredsson L, Celius EG, Harbo HF, Kockum I, Jagodic M, Olsson T (2010) IL-22RA2 associates with multiple sclerosis and macrophage effector mechanisms in experimental neuroinflammation. J Immunol 185(11):6883–6890PubMedCrossRefGoogle Scholar
  19. 19.
    Kreymborg K, Etzensperger R, Dumoutier L, Haak S, Rebollo A, Buch T, Heppner FL, Renauld JC, Becher B (2007) IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 179(12):8098–8104PubMedGoogle Scholar
  20. 20.
    Tatton WG, Chalmers-Redman RM, Ju WJ, Mammen M, Carlile GW, Pong AW, Tatton NA (2002) Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301(2):753–764PubMedCrossRefGoogle Scholar
  21. 21.
    Bian J, Wang K, Kong X, Liu H, Chen F, Hu M, Zhang X, Jiao X, Ge B, Wu Y, Meng S (2011) Caspase- and p38-MAPK-dependent induction of apoptosis in A549 lung cancer cells by Newcastle disease virus. Arch Virol 156(8):1335–1344PubMedCrossRefGoogle Scholar
  22. 22.
    Meng S, Chen Z, Munoz-Antonia T, Wu J (2005) Participation of both Gab1 and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J 391(Pt 1):143–151PubMedGoogle Scholar
  23. 23.
    Kunioku H, Inoue K, Tomida M (2001) Interleukin-6 protects rat PC12 cells from serum deprivation or chemotherapeutic agents through the phosphatidylinositol 3-kinase and STAT3 pathways. Neurosci Lett 309(1):13–16PubMedCrossRefGoogle Scholar
  24. 24.
    Umegaki H, Yamada K, Naito M, Kameyama T, Iguchi A, Nabeshima T (1996) Protective effect of interleukin-6 against the death of PC12 cells caused by serum deprivation or by the addition of a calcium ionophore. Biochem Pharmacol 52(6):911–916PubMedCrossRefGoogle Scholar
  25. 25.
    Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B, Pierce R, McClanahan TK, Sadekova S, de Waal Malefyt R (2010) Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage. J Immunol 185(1):679–687PubMedCrossRefGoogle Scholar
  26. 26.
    Gispen WH, Nielander HB, De Graan PN, Oestreicher AB, Schrama LH, Schotman P (1991) Role of the growth-associated protein B-50/GAP-43 in neuronal plasticity. Mol Neurobiol 5(2–4):61–85PubMedCrossRefGoogle Scholar
  27. 27.
    Wu YY, Bradshaw RA (1996) Synergistic induction of neurite outgrowth by nerve growth factor or epidermal growth factor and interleukin-6 in PC12 cells. J Biol Chem 271(22):13033–13039PubMedCrossRefGoogle Scholar
  28. 28.
    Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26(3):397–406PubMedCrossRefGoogle Scholar
  29. 29.
    Ferro MM, Bellissimo MI, Anselmo-Franci JA, Angellucci ME, Canteras NS, Da Cunha C (2005) Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Methods 148(1):78–87PubMedCrossRefGoogle Scholar
  30. 30.
    Hirsch EC, Hoglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 65:89–100PubMedCrossRefGoogle Scholar
  31. 31.
    Schintu N, Frau L, Ibba M, Garau A, Carboni E, Carta AR (2009) Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotox Res 16(2):127–139PubMedCrossRefGoogle Scholar
  32. 32.
    Lotharius J, O’Malley KL (2000) The Parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 275(49):38581–38588PubMedCrossRefGoogle Scholar
  33. 33.
    Itano Y, Kitamura Y, Nomura Y (1994) 1-Methyl-4-phenylpyridinium (MPP+)-induced cell death in PC12 cells: inhibitory effects of several drugs. Neurochem Int 25(5):419–424PubMedCrossRefGoogle Scholar
  34. 34.
    Gelinas S, Martinoli MG (2002) Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells. J Neurosci Res 70(1):90–96PubMedCrossRefGoogle Scholar
  35. 35.
    Qin R, Li X, Li G, Tao L, Li Y, Sun J, Kang X, Chen J (2011) Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation. Toxicol Lett 202(1):1–7PubMedCrossRefGoogle Scholar
  36. 36.
    Presse F, Cardona B, Borsu L, Nahon JL (1997) Lithium increases melanin-concentrating hormone mRNA stability and inhibits tyrosine hydroxylase gene expression in PC12 cells. Brain Res Mol Brain Res 52(2):270–283PubMedCrossRefGoogle Scholar
  37. 37.
    Storch A, Ludolph AC, Schwarz J (2004) Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 111(10–11):1267–1286PubMedCrossRefGoogle Scholar
  38. 38.
    Mills EM, Gunasekar PG, Pavlakovic G, Isom GE (1996) Cyanide-induced apoptosis and oxidative stress in differentiated PC12 cells. J Neurochem 67(3):1039–1046PubMedCrossRefGoogle Scholar
  39. 39.
    Maguire-Zeiss KA (2008) Alpha-synuclein: a therapeutic target for Parkinson’s disease? Pharmacol Res 58(5–6):271–280PubMedCrossRefGoogle Scholar
  40. 40.
    Oksman M, Tanila H, Yavich L (2009) Behavioural and neurochemical response of alpha-synuclein A30P transgenic mice to the effects of l-DOPA. Neuropharmacology 56(3):647–652PubMedCrossRefGoogle Scholar
  41. 41.
    Xu J, Wei C, Xu C, Bennett MC, Zhang G, Li F, Tao E (2007) Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expression of an alpha-Synuclein multimer. Brain Res 1139:220–225PubMedCrossRefGoogle Scholar
  42. 42.
    Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC (2000) IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 1(8):488–494PubMedCrossRefGoogle Scholar
  43. 43.
    Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K, Volk HD, Sterry W, Sabat R (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36(5):1309–1323PubMedCrossRefGoogle Scholar
  44. 44.
    Weber GF, Gaertner FC, Erl W, Janssen KP, Blechert B, Holzmann B, Weighardt H, Essler M (2006) IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G2-M phase. J Immunol 177(11):8266–8272PubMedGoogle Scholar
  45. 45.
    Wolk K, Witte E, Warszawska K, Schulze-Tanzil G, Witte K, Philipp S, Kunz S, Docke WD, Asadullah K, Volk HD, Sterry W, Sabat R (2009) The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis. Eur J Immunol 39(12):3570–3581PubMedCrossRefGoogle Scholar
  46. 46.
    Boniface K, Lecron JC, Bernard FX, Dagregorio G, Guillet G, Nau F, Morel F (2005) Keratinocytes as targets for interleukin-10-related cytokines: a putative role in the pathogenesis of psoriasis. Eur Cytokine Netw 16(4):309–319PubMedGoogle Scholar
  47. 47.
    Bleicher L, de Moura PR, Watanabe L, Colau D, Dumoutier L, Renauld JC, Polikarpov I (2008) Crystal structure of the IL-22/IL-22R1 complex and its implications for the IL-22 signaling mechanism. FEBS Lett 582(20):2985–2992PubMedCrossRefGoogle Scholar
  48. 48.
    Kopin IJ, Markey SP (1988) MPTP toxicity: implications for research in Parkinson’s disease. Annu Rev Neurosci 11:81–96PubMedCrossRefGoogle Scholar
  49. 49.
    Heikkila RE, Sieber BA, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10(3):171–183PubMedCrossRefGoogle Scholar
  50. 50.
    Calon F, Lavertu N, Lemieux AM, Morissette M, Goulet M, Grondin R, Blanchet PJ, Bedard PJ, Di Paolo T (2001) Effect of MPTP-induced denervation on basal ganglia GABA(B) receptors: correlation with dopamine concentrations and dopamine transporter. Synapse 40(3):225–234PubMedCrossRefGoogle Scholar
  51. 51.
    Spulber S, Schultzberg M (2010) Connection between inflammatory processes and transmitter function-Modulatory effects of interleukin-1. Prog Neurobiol 90(2):256–262PubMedCrossRefGoogle Scholar
  52. 52.
    Jean-Gilles L, Gran B, Constantinescu CS (2010) Interaction between cytokines, cannabinoids and the nervous system. Immunobiology 215(8):606–610PubMedCrossRefGoogle Scholar
  53. 53.
    Wang DD, Zhao YF, Wang GY, Sun B, Kong QF, Zhao K, Zhang Y, Wang JH, Liu YM, Mu LL, Wang DS, Li HL (2009) IL-17 potentiates neuronal injury induced by oxygen-glucose deprivation and affects neuronal IL-17 receptor expression. J Neuroimmunol 212(1–2):17–25PubMedCrossRefGoogle Scholar
  54. 54.
    Wolk K, Haugen HS, Xu W, Witte E, Waggie K, Anderson M, Vom Baur E, Witte K, Warszawska K, Philipp S, Johnson-Leger C, Volk HD, Sterry W, Sabat R (2009) IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med (Berl) 87(5):523–536CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Yongchun Liu
    • 1
    • 4
  • Wenyan Pan
    • 2
  • Shengmei Yang
    • 2
  • Xiaoying Wu
    • 2
  • Jianfu Wu
    • 2
  • Jun Ma
    • 3
  • Zengqiang Yuan
    • 3
  • Songshu Meng
    • 2
  1. 1.Northern Jiangsu People’s HospitalYangzhouChina
  2. 2.College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
  3. 3.State Key Laboratory of Brain and Cognitive Sciences, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  4. 4.Clinical Medical SchoolYangzhou UniversityYangzhouChina

Personalised recommendations