Skip to main content

Advertisement

Log in

Distinct microRNA expression signatures in human right atrial and ventricular myocardium

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human atrial and ventricular myocardium has distinct structure and physiology. MicroRNAs (miRNAs) are the central players in the regulation of gene expression, participating in many physiological processes. A comprehensive knowledge of miRNA expression in the human heart is essential for the understanding of myocardial function. The aim of this study was to compare the miRNA signature in human right atrial and ventricular myocardium. Agilent human miRNA arrays were used to indicate the miRNA expression signatures of the right atrial (n = 8) and ventricular (n = 9) myocardium of healthy individuals. Quantitative reverse transcription-polymerase chain reactions (qRT-PCRs) were used to validate the array results. DIANA-mirPath was used to incorporate the miRNAs into pathways. MiRNA arrays showed that 169 miRNAs were expressed at different levels in human right atrial and ventricular myocardium. The unsupervised hierarchical clustering analysis based on the 169 dysregulated miRNAs showed that miRNA expression categorized two well-defined clusters that corresponded to human right atrial and ventricular myocardium. The qRT-PCR results correlated well with the microarray data. Bioinformatic analysis indicated the potential miRNA targets and molecular pathways. This study indicates that distinct miRNA expression signatures in human right atrial and ventricular myocardium. The findings provide a novel understanding of the molecular differences between human atrial and ventricular myocardium and may establish a framework for an anatomically detailed evaluation of cardiac function regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kaab S, Pfeufer A, Uberfuhr P, Dugas M, Steinbeck G, Nabauer M (2005) Functional profiling of human atrial and ventricular gene expression. Pflugers Arch 450:201–208

    Article  PubMed  CAS  Google Scholar 

  2. Ng SY, Wong CK, Tsang SY (2010) Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol 299:C1234–C1249

    Article  PubMed  CAS  Google Scholar 

  3. Burstein B, Libby E, Calderone A, Nattel S (2008) Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 117:1630–1641

    Article  PubMed  Google Scholar 

  4. Ellinghaus P, Scheubel RJ, Dobrev D, Ravens U, Holtz J, Huetter J, Nielsch U, Morawietz H (2005) Comparing the global mRNA expression profile of human atrial and ventricular myocardium with high-density oligonucleotide arrays. J Thorac Cardiovasc Surg 129:1383–1390

    Article  PubMed  CAS  Google Scholar 

  5. Reiser PJ, Portman MA, Ning XH, Schomisch Moravec C (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–H1820

    PubMed  CAS  Google Scholar 

  6. Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, Coetzee WA, Nichols CG (2008) Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res 103:1458–1465

    Article  PubMed  CAS  Google Scholar 

  7. Wiese S, Breyer T, Dragu A, Wakili R, Burkard T, Schmidt-Schweda S, Fuchtbauer EM, Dohrmann U, Beyersdorf F, Radicke D, Holubarsch CJ (2000) Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 102:3074–3079

    Article  PubMed  CAS  Google Scholar 

  8. Asp J, Synnergren J, Jonsson M, Dellgren G, Jeppsson A (2012) Comparison of human cardiac gene expression profiles in paired samples of right atrium and left ventricle collected in vivo. Physiol Genomics 44:89–98

    Article  PubMed  CAS  Google Scholar 

  9. Kostin S, Schaper J (2001) Tissue-specific patterns of gap junctions in adult rat atrial and ventricular cardiomyocytes in vivo and in vitro. Circ Res 88:933–939

    Article  PubMed  CAS  Google Scholar 

  10. Narolska NA, van Loon RB, Boontje NM, Zaremba R, Penas SE, Russell J, Spiegelenberg SR, Huybregts MAJM, Visser FC, de Jong JW, van der Velden J, Stienen GJM (2005) Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res 65:221–229

    Article  PubMed  CAS  Google Scholar 

  11. Vozzi C, Dupont E, Coppen SR, Yeh HI, Severs NJ (1999) Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 31:991–1003

    Article  PubMed  CAS  Google Scholar 

  12. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342

    Article  PubMed  CAS  Google Scholar 

  13. van Rooij E (2011) The art of microRNA research. Circ Res 108:219–234

    Article  PubMed  Google Scholar 

  14. Latronico MV, Condorelli G (2011) microRNAs in hypertrophy and heart failure. Exp Biol Med (Maywood) 236:125–131

    Article  CAS  Google Scholar 

  15. Latronico MV, Catalucci D, Condorelli G (2008) MicroRNA and cardiac pathologies. Physiol Genomics 34:239–242

    Article  PubMed  CAS  Google Scholar 

  16. Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J (2012) Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med. doi:10.1007/s00109-011-0840-5

  17. Xiao J, Liang D, Zhang Y, Liu Y, Zhang H, Liu Y, Li L, Liang X, Sun Y, Chen YH (2011) MicroRNA expression signature in atrial fibrillation with mitral stenosis. Physiol Genomics 43:655–664

    Article  PubMed  CAS  Google Scholar 

  18. Biggar KK, Storey KB (2011) The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol 3:167–175

    Article  PubMed  CAS  Google Scholar 

  19. Kosik KS (2011) MicroRNAs and cellular phenotype. Cell 143:21–26

    Article  Google Scholar 

  20. Kukreja RC, Yin C, Salloum FN (2011) MicroRNAs: new players in cardiac injury and protection. Mol Pharmacol 80:558–564

    Article  PubMed  CAS  Google Scholar 

  21. Latronico MV, Condorelli G (2009) MicroRNAs and cardiac pathology. Nat Rev Cardiol 6:419–429

    Article  PubMed  Google Scholar 

  22. Liu N, Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18:510–525

    Article  PubMed  CAS  Google Scholar 

  23. Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108:3646–3653

    Article  PubMed  CAS  Google Scholar 

  24. Thum T, Catalucci D, Bauersachs J (2008) MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 79:562–570

    Article  PubMed  CAS  Google Scholar 

  25. Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M (2012) The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics 44:237–244

    Article  PubMed  CAS  Google Scholar 

  26. Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG (2009) DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 25:1991–1993

    Article  PubMed  CAS  Google Scholar 

  27. Latronico MV, Catalucci D, Condorelli G (2007) Emerging role of microRNAs in cardiovascular biology. Circ Res 101:1225–1236

    Article  PubMed  CAS  Google Scholar 

  28. Schroen B, Heymans S (2012) Small but smart–microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc Res 93:605–613

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30872544 and 81170158) and Jiangsu Province Health Department Program Grant (H200821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijiang Chen.

Additional information

Yangyang Zhang, Xiaowei Wang and Xiaohan Xu have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, X., Xu, X. et al. Distinct microRNA expression signatures in human right atrial and ventricular myocardium. Mol Cell Biochem 371, 23–29 (2012). https://doi.org/10.1007/s11010-012-1417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1417-5

Keywords

Navigation