Skip to main content

Advertisement

Log in

Up-regulation of interferon-stimulated gene15 and its conjugates by tumor necrosis factor-α via type I interferon-dependent and -independent pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Interferon-stimulated gene15 (ISG15) is the first characterized ubiquitin-like protein, which is strongly induced by type I interferons (IFN-α/β), bacterial endotoxin, and cellular stress. Up-regulation of ISG15 is observed in several cancer cell types and is associated with cancer progression. As many cytokines can influence all stages of tumorigenesis, the elevated expression of ISG15 system may be regulated in cancer cells by inflammatory cytokines. In this study, we showed that TNF-α, but not TGF-β and IL-6, up-regulates levels of both ISG15 and its conjugates in human lung carcinoma A549 and human squamous carcinoma HSC4 cell lines. Induction of ISG15 and its conjugates by TNF-α was dose-dependent and required mediation of p38 MAP kinase and Jak1 through up-regulation of endogenous type I interferon expression. SB202190 (p38 MAPK inhibitor) and Jak1 inhibitor suppressed TNF-α-induced expression of ISG15 and its conjugates. However, only SB202190 inhibited the expression of type I interferons by TNF-α. Although B18R, a soluble type I interferon receptor, totally abolished the effect of exogenous IFN-β, it was unable to inhibit completely the TNF-α-induced ISG15 production. In addition, the initiation of ISG15 induction by TNF-α was detected earlier than that of IFN-β induction. Taken together, TNF-α elicits the induction of ISG15 and ISG15 conjugates not only via the autocrine stimulation of type I interferon expression, but also through a type I interferon-independent pathway. These data provide a possible link between inflammatory response and cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar S, Yoshida Y, Noda M (1993) Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem Biophys Res Commun 195:393–399

    Article  PubMed  CAS  Google Scholar 

  2. Haas AL, Ahrens P, Bright PM, Ankel H (1987) Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 262:11315–11323

    PubMed  CAS  Google Scholar 

  3. Zhang D, Zhang DE (2011) Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res 31:119–130

    Article  PubMed  CAS  Google Scholar 

  4. Yuan W, Krug RM (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20:362–371

    Article  PubMed  CAS  Google Scholar 

  5. Zhao C, Beaudenon SL, Kelley ML, Waddell MB, Yuan W, Schulman BA, Huibregtse JM, Krug RM (2004) The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc Natl Acad Sci USA 101:7578–7582

    Article  PubMed  CAS  Google Scholar 

  6. Kim KI, Giannakopoulos NV, Virgin HW, Zhang DE (2004) Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol Cell Biol 24:9592–9600

    Article  PubMed  CAS  Google Scholar 

  7. Zou W, Zhang DE (2006) The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem 281:3989–3994

    Article  PubMed  CAS  Google Scholar 

  8. Dastur A, Beaudenon S, Kelley M, Krug RM, Huibregtse JM (2006) Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J Biol Chem 281:4334–4338

    Article  PubMed  CAS  Google Scholar 

  9. Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32

    Article  PubMed  CAS  Google Scholar 

  10. Silvennoinen O, Ihle JN, Schlessinger J, Levy DE (1993) Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366:583–585

    Article  PubMed  CAS  Google Scholar 

  11. Kessler DS, Levy DE, Darnell JE Jr (1988) Two interferon-induced nuclear factors bind a single promoter element in interferon-stimulated genes. Proc Natl Acad Sci USA 85:8521–8525

    Article  PubMed  CAS  Google Scholar 

  12. Au WC, Moore PA, Lowther W, Juang YT, Pitha PM (1995) Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc Natl Acad Sci USA 92:11657–11661

    Article  PubMed  CAS  Google Scholar 

  13. Mossman KL, Macgregor PF, Rozmus JJ, Goryachev AB, Edwards AM, Smiley JR (2001) Herpes simplex virus triggers and then disarms a host antiviral response. J Virol 75:750–758

    Article  PubMed  CAS  Google Scholar 

  14. Nicholl MJ, Robinson LH, Preston CM (2000) Activation of cellular interferon-responsive genes after infection of human cells with herpes simplex virus type 1. J Gen Virol 81:2215–2218

    PubMed  CAS  Google Scholar 

  15. Li J, Peet GW, Balzarano D, Li X, Massa P, Barton RW, Marcu KB (2001) Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J Biol Chem 276:18579–18590

    Article  PubMed  CAS  Google Scholar 

  16. Gessani S, Belardelli F, Pecorelli A, Puddu P, Baglioni C (1989) Bacterial lipopolysaccharide and gamma interferon induce transcription of beta interferon mRNA and interferon secretion in murine macrophages. J Virol 63:2785–2789

    PubMed  CAS  Google Scholar 

  17. Manthey CL, Wang SW, Kinney SD, Yao Z (1998) SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J Leukoc Biol 64:409–417

    PubMed  CAS  Google Scholar 

  18. Desai SD, Haas AL, Wood LM, Tsai YC, Pestka S, Rubin EH, Saleem A, Nur EKA, Liu LF (2006) Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 66:921–928

    Article  PubMed  CAS  Google Scholar 

  19. Dinarello CA (2006) The paradox of pro-inflammatory cytokines in cancer. Cancer Metastasis Rev 25:307–313

    Article  PubMed  CAS  Google Scholar 

  20. Germano G, Allavena P, Mantovani A (2008) Cytokines as a key component of cancer-related inflammation. Cytokine 43:374–379

    Article  PubMed  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  22. Loeb KR, Haas AL (1992) The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267:7806–7813

    PubMed  CAS  Google Scholar 

  23. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  PubMed  CAS  Google Scholar 

  24. Alcami A, Symons JA, Smith GL (2000) The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol 74:11230–11239

    Article  PubMed  CAS  Google Scholar 

  25. Kundu JK, Surh YJ (2008) Inflammation: gearing the journey to cancer. Mutat Res 659:15–30

    Article  PubMed  CAS  Google Scholar 

  26. Ahrens PB, Besancon F, Memet S, Ankel H (1990) Tumour necrosis factor enhances induction by beta-interferon of a ubiquitin cross-reactive protein. J Gen Virol 71:1675–1682

    Article  PubMed  CAS  Google Scholar 

  27. Reis LF, Ho Lee T, Vilcek J (1989) Tumor necrosis factor acts synergistically with autocrine interferon-beta and increases interferon-beta mRNA levels in human fibroblasts. J Biol Chem 264:16351–16354

    PubMed  CAS  Google Scholar 

  28. Yarilina A, Park-Min KH, Antoniv T, Hu X, Ivashkiv LB (2008) TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat Immunol 9:378–387

    Article  PubMed  CAS  Google Scholar 

  29. Wu Y, Zhou BP (2010) TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102:639–644

    Article  PubMed  CAS  Google Scholar 

  30. Siddoo-Atwal C, Haas AL, Rosin MP (1996) Elevation of interferon beta-inducible proteins in ataxia telangiectasia cells. Cancer Res 56:443–447

    PubMed  CAS  Google Scholar 

  31. Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947

    Article  PubMed  CAS  Google Scholar 

  32. Sing A, Merlin T, Knopf HP, Nielsen PJ, Loppnow H, Galanos C, Freudenberg MA (2000) Bacterial induction of beta interferon in mice is a function of the lipopolysaccharide component. Infect Immun 68:1600–1607

    Article  PubMed  CAS  Google Scholar 

  33. Toshchakov V, Jones BW, Perera PY, Thomas K, Cody MJ, Zhang S, Williams BR, Major J, Hamilton TA, Fenton MJ, Vogel SN (2002) TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 3:392–398

    Article  PubMed  CAS  Google Scholar 

  34. Navarro L, David M (1999) p38-dependent activation of interferon regulatory factor 3 by lipopolysaccharide. J Biol Chem 274:35535–35538

    Article  PubMed  CAS  Google Scholar 

  35. Miscia S, Marchisio M, Grilli A, Di Valerio V, Centurione L, Sabatino G, Garaci F, Zauli G, Bonvini E, Di Baldassarre A (2002) Tumor necrosis factor alpha (TNF-alpha) activates Jak1/Stat3-Stat5B signaling through TNFR-1 in human B cells. Cell Growth Differ 13:13–18

    PubMed  CAS  Google Scholar 

  36. Guo D, Dunbar JD, Yang CH, Pfeffer LM, Donner DB (1998) Induction of Jak/STAT signaling by activation of the type 1 TNF receptor. J Immunol 160:2742–2750

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Thailand Research Fund (MRG5180019), Faculty of Dentistry, Mahidol University, and Faculty of Medicine Research Fund, Chiang Mai University, Thailand. The authors would like to thank Professor P. Wilairat, Faculty of Science, Mahidol University for critical reading of the manuscript and Mrs. S. Korsuwannawong for assistance in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kongthawat Chairatvit or Ariyaphong Wongnoppavich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2012_1360_MOESM1_ESM.tif

Supplementary Fig. Two-dimensional Western blot analysis of TNF-α and IFN-β induced A549 cells. Cells were treated with 15 ng/ml TNF-α or 103 IU/ml IFN-β at 37oC for 24 h. Fifty µg of total proteins was precipitated with 3 volumes of cold acetone. and analyzed in the first dimension by Ettan IPGphor isoelectric focusing system (GE Healthcare, Piscataway, NJ, USA) using premade immobilized pH gradient (IPG) strips with pH range 3-10 (GE Healthcare, Piscataway, NJ, USA). The Strips were further analyzed by SDS-PAGE. ISG15 and ISG15 conjugates cross-reactive spots were detected by immunoblotting as described in legend to Fig. 1. (TIFF 564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chairatvit, K., Wongnoppavich, A. & Choonate, S. Up-regulation of interferon-stimulated gene15 and its conjugates by tumor necrosis factor-α via type I interferon-dependent and -independent pathways. Mol Cell Biochem 368, 195–201 (2012). https://doi.org/10.1007/s11010-012-1360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1360-5

Keywords:

Navigation