Advertisement

Molecular and Cellular Biochemistry

, Volume 368, Issue 1–2, pp 127–135 | Cite as

Current state of the development of mesenchymal stem cells into clinically applicable Schwann cell transplants

  • Yu Pan
  • Sa Cai
Article

Abstract

Schwann cells are critically important in recovery from injuries to the peripheral nervous system, and their absence from the central nervous system (CNS) may be a critical limiting factor in the CNS regeneration capacity. Various types of stem cells have been investigated for their potential to be induced to develop a Schwann cell phenotype, with mesenchymal stem cells (MSCs) being the most promising among them. The methods for inducing MSCs differentiation into Schwann cell-like cells are presented in detail in this review. The evidence related to successful differentiation of MSCs to Schwann cell-like cells is particularly discussed herein, which includes the changes in morphology, phenotype, function, and proteome. The possible explanations for the differentiation of MSCs to Schwann cell-like cells are also presented. Finally, we suggest future research aims which will need to be fulfilled to elucidate the biology of Schwann cell differentiation and MSC transdifferentiation, to enable clinical application of therapeutic differentiated MSC transplantation into nerve injury sites.

Keywords

Mesenchymal stem cells Schwann cells Differentiation Transdifferentiation Mechanisms Clinical application 

Notes

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 81000011, 81000835), the Distinguished Young Talents in Higher Education of Guangdong (No. LYM091182009), Guangdong Natural Science Foundation (No. 10451018201004913), and Shenzhen Technological R&D Foundation (No. JC201005280429A).

References

  1. 1.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902PubMedCrossRefGoogle Scholar
  2. 2.
    Wang J, Ding F, Gu Y, Liu J, Gu X (2009) Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res 1262:7–15PubMedCrossRefGoogle Scholar
  3. 3.
    Brohlin M, Mahay D, Novikov LN, Terenghi G, Wiberg M, Shawcross SG, Novikova LN (2009) Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res 64:41–49PubMedCrossRefGoogle Scholar
  4. 4.
    Keilhoff G, Goihl A, Langnase K, Fansa H, Wolf G (2006) Transdifferentiation of mesenchymal stem cells into Schwann cell-like myelinating cells. Eur J Cell Biol 85:11–24PubMedCrossRefGoogle Scholar
  5. 5.
    Cai S, Shea GK, Tsui AY, Chan YS, Shum DK (2011) Derivation of clinically applicable schwann cells from bone marrow stromal cells for neural repair and regeneration. CNS Neurol Disord Drug Targets 10:500–508PubMedGoogle Scholar
  6. 6.
    Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Wan W, Ratajczak J, Wojakowski W, Kucia M (2008) Hunt for pluripotent stem cell—regenerative medicine search for almighty cell. J Autoimmun 30:151–162PubMedCrossRefGoogle Scholar
  7. 7.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  8. 8.
    Sordi V (2009) Mesenchymal stem cell homing capacity. Transplantation 87:S42–S45PubMedCrossRefGoogle Scholar
  9. 9.
    Fu X, Li H (2009) Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res 335:317–321PubMedCrossRefGoogle Scholar
  10. 10.
    He A, Jiang Y, Gui C, Sun Y, Li J, Wang JA (2009) The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can J Cardiol 25:353–358PubMedCrossRefGoogle Scholar
  11. 11.
    Cheng FC, Tai MH, Sheu ML, Chen CJ, Yang DY, Su HL, Ho SP, Lai SZ, Pan HC (2010) Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg 112:868–879PubMedCrossRefGoogle Scholar
  12. 12.
    Tohill M, Terenghi G (2004) Stem-cell plasticity and therapy for injuries of the peripheral nervous system. Biotechnol Appl Biochem 40:17–24PubMedCrossRefGoogle Scholar
  13. 13.
    Cai S, Pan Y, Han B, Sun TZ, Sheng ZY, Fu XB (2011) Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands. Chin Med J 124:2260–2268PubMedGoogle Scholar
  14. 14.
    Lin W, Chen X, Wang X, Liu J, Gu X (2008) Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro. In Vitro Cell Dev Biol Anim 44:31–40PubMedCrossRefGoogle Scholar
  15. 15.
    Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:1771–1776PubMedCrossRefGoogle Scholar
  16. 16.
    Dezawa M (2002) Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells. Anat Sci Int 77:12–25PubMedCrossRefGoogle Scholar
  17. 17.
    Shimizu S, Kitada M, Ishikawa H, Itokazu Y, Wakao S, Dezawa M (2007) Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochem Biophys Res Commun 359:915–920PubMedCrossRefGoogle Scholar
  18. 18.
    Dore JJ, DeWitt JC, Setty N, Donald MD, Joo E, Chesarone MA, Birren SJ (2009) Multiple signaling pathways converge to regulate bone-morphogenetic-protein-dependent glial gene expression. Dev Neurosci 31:473–486PubMedCrossRefGoogle Scholar
  19. 19.
    Yan H, Bunge MB, Wood PM, Plant GW (2001) Mitogenic response of adult rat olfactory ensheathing glia to four growth factors. Glia 33:334–342PubMedCrossRefGoogle Scholar
  20. 20.
    Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, Bunge MB (2004) cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 10:610–616PubMedCrossRefGoogle Scholar
  21. 21.
    Movaghar B, Tiraihi T, Mesbah-Namin SA (2008) Transdifferentiation of bone marrow stromal cells into Schwann cell phenotype using progesterone as inducer. Brain Res 1208:17–24PubMedCrossRefGoogle Scholar
  22. 22.
    Caddick J, Kingham PJ, Gardiner NJ, Wiberg M, Terenghi G (2006) Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia 54:840–849PubMedCrossRefGoogle Scholar
  23. 23.
    Tohill M, Mantovani C, Wiberg M, Terenghi G (2004) Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett 362:200–203PubMedCrossRefGoogle Scholar
  24. 24.
    Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H (2006) Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol 26:1235–1252PubMedCrossRefGoogle Scholar
  25. 25.
    Paivalainen S, Nissinen M, Honkanen H, Lahti O, Kangas SM, Peltonen J, Peltonen S, Heape AM (2008) Myelination in mouse dorsal root ganglion/Schwann cell cocultures. Mol Cell Neurosci 37:568–578PubMedCrossRefGoogle Scholar
  26. 26.
    Mahay D, Terenghi G, Shawcross SG (2008) Schwann cell mediated trophic effects by differentiated mesenchymal stem cells. Exp Cell Res 314:2692–2701PubMedCrossRefGoogle Scholar
  27. 27.
    Yang J, Lou Q, Huang R, Shen L, Chen Z (2008) Dorsal root ganglion neurons induce transdifferentiation of mesenchymal stem cells along a Schwann cell lineage. Neurosci Lett 445:246–251PubMedCrossRefGoogle Scholar
  28. 28.
    Mahay D, Terenghi G, Shawcross SG (2008) Growth factors in mesenchymal stem cells following glial-cell differentiation. Biotechnol Appl Biochem 51:167–176PubMedCrossRefGoogle Scholar
  29. 29.
    Park HW, Lim MJ, Jung H, Lee SP, Paik KS, Chang MS (2010) Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 58:1118–1132PubMedCrossRefGoogle Scholar
  30. 30.
    Li W, Sun H, Xu Z, Ding F, Gu X (2009) Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells. Sci China C Life Sci 52:267–277PubMedCrossRefGoogle Scholar
  31. 31.
    Cheng ET, Utley DS, Ho PR, Tarn DM, Coan GM, Verity AN, Sierra DH, Terris DJ (1998) Functional recovery of transected nerves treated with systemic BDNF and CNTF. Microsurgery 18:35–41PubMedCrossRefGoogle Scholar
  32. 32.
    Lu P, Jones LL, Tuszynski MH (2005) BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Exp Neurol 191:344–360PubMedCrossRefGoogle Scholar
  33. 33.
    Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells–a critical review. APMIS 113:831–844PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou Q, Melton DA (2008) Extreme makeover: converting one cell into another. Cell Stem Cell 3:382–388PubMedCrossRefGoogle Scholar
  35. 35.
    Graf T (2011) Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9:504–516PubMedCrossRefGoogle Scholar
  36. 36.
    Barzilay R, Melamed E, Offen D (2009) Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 27:2509–2515PubMedCrossRefGoogle Scholar
  37. 37.
    Cai S, Fu XB, Sheng ZY (2007) Dedifferentiation: a new approach in stem cell research. Bioscience 57:655–662CrossRefGoogle Scholar
  38. 38.
    Cai S, Pan Y, Fu XB, Lei YH, Sun TZ, Wang J, Sheng ZY (2009) Dedifferentiation of human epidermal keratinocytes induced by UV in vitro. J Health Sci 55:709–719CrossRefGoogle Scholar
  39. 39.
    Baum B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19:294–308PubMedCrossRefGoogle Scholar
  40. 40.
    Battula VL, Evans KW, Hollier BG, Shi Y, Marini FC, Ayyanan A, Wang RY, Brisken C, Guerra R, Andreeff M, Mani SA (2010) Epithelial–mesenchymal transition-derived cells exhibit multi-lineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28:1435–1445PubMedCrossRefGoogle Scholar
  41. 41.
    Choi SS, Diehl AM (2009) Epithelial-to-mesenchymal transitions in the liver. Hepatology 50:2007–2013PubMedCrossRefGoogle Scholar
  42. 42.
    Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7:51–63PubMedCrossRefGoogle Scholar
  43. 43.
    Zipori D (2004) Mesenchymal stem cells: harnessing cell plasticity to tissue and organ repair. Blood Cells Mol Dis 33:211–215PubMedCrossRefGoogle Scholar
  44. 44.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRefGoogle Scholar
  45. 45.
    Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 100(Suppl 1):11854–11860PubMedCrossRefGoogle Scholar
  46. 46.
    Nagoshi N, Shibata S, Nakamura M, Matsuzaki Y, Toyama Y, Okano H (2009) Neural crest-derived stem cells display a wide variety of characteristics. J Cell Biochem 107:1046–1052PubMedCrossRefGoogle Scholar
  47. 47.
    Pierret C, Spears K, Maruniak JA, Kirk MD (2006) Neural crest as the source of adult stem cells. Stem Cells Dev 15:286–291PubMedCrossRefGoogle Scholar
  48. 48.
    Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5:688–701PubMedCrossRefGoogle Scholar
  49. 49.
    Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, Shimmura S, Nagai Y, Nakagawa T, Okano H, Matsuzaki Y (2009) Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun 379:1114–1119PubMedCrossRefGoogle Scholar
  50. 50.
    Labat ML, Milhaud G, Pouchelet M, Boireau P (2000) On the track of a human circulating mesenchymal stem cell of neural crest origin. Biomed Pharmacother 54:146–162PubMedCrossRefGoogle Scholar
  51. 51.
    Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, Morikawa S, Okada Y, Mabuchi Y, Katoh H, Okada S, Fukuda K, Suda T, Matsuzaki Y, Toyama Y, Okano H (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2:392–403PubMedCrossRefGoogle Scholar
  52. 52.
    Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388PubMedCrossRefGoogle Scholar
  53. 53.
    Somoza R, Conget P, Rubio FJ (2008) Neuropotency of human mesenchymal stem cell cultures: clonal studies reveal the contribution of cell plasticity and cell contamination. Biol Blood Marrow Transplant 14:546–555PubMedCrossRefGoogle Scholar
  54. 54.
    Shea GK, Tsui AY, Chan YS, Shum DK (2010) Bone marrow-derived Schwann cells achieve fate commitment—a prerequisite for remyelination therapy. Exp Neurol 224:448–458PubMedCrossRefGoogle Scholar
  55. 55.
    Ogata T, Iijima S, Hoshikawa S, Miura T, Yamamoto S, Oda H, Nakamura K, Tanaka S (2004) Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci 24:6724–6732PubMedCrossRefGoogle Scholar
  56. 56.
    Chattopadhyay S, Shubayev VI (2009) MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway. Glia 57:1316–1325PubMedCrossRefGoogle Scholar
  57. 57.
    Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, Wilton DK, Al-Shawi R, Simons P, Shen J, Guillemot F, Radtke F, Meijer D, Feltri ML, Wrabetz L, Mirsky R, Jessen KR (2009) Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 12:839–847PubMedCrossRefGoogle Scholar
  58. 58.
    Taveggia C, Feltri ML, Wrabetz L (2010) Signals to promote myelin formation and repair. Nat Rev Neurol 6:276–287PubMedCrossRefGoogle Scholar
  59. 59.
    Ao Q, Fung CK, Tsui AY, Cai S, Zuo HC, Chan YS, Shum DK (2011) The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 32:787–796PubMedCrossRefGoogle Scholar
  60. 60.
    Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Research Center of Medical Sciences, Guangdong General HospitalGuangdong Academy of Medical SciencesGuangzhouChina
  2. 2.Department of Physiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
  3. 3.Department of Histology and Embryology, School of MedicineShenzhen UniversityShenzhenChina

Personalised recommendations