Molecular and Cellular Biochemistry

, Volume 367, Issue 1–2, pp 153–163 | Cite as

2,2′-Dipyridyl diselenide is a better antioxidant than other disubstituted diaryl diselenides

  • Cristiane Luchese
  • Ricardo Brandão
  • Carmine I. Acker
  • Cristina W. Nogueira


The aim of this study was to investigate the in vitro antioxidant activity of 2,2′-dipyridyl diselenide (e) by comparing this effect with m-trifluoromethyl-diphenyl diselenide (a), p-fluor-diphenyl diselenide (b), p-chloro-diphenyl diselenide (c), and p-methoxyl-diphenyl diselenide (d) in rat liver homogenate. We also investigated if the mechanisms involved in the antioxidant property of 2,2′-dipyridyl diselenide are the same that of other diselenides. Thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC) levels were determined in rat liver homogenate, as indicators of antioxidant activity. Dehydroascorbate (DHA) reductase- and glutathione S-transferase (GST)-like activities, 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical-scavenging activities and the protection against the oxidation of Fe2+ were determined to better understand the antioxidant property of compounds. δ-Aminolevulinic dehydratase (δ-ALA-D) activity was also carried out in rat liver homogenates, as a toxicological parameter. Compound e showed the highest potency in reducing TBARS (order of IC50 values: e < b ≤ a < d ≤ c) and PC (order of IC50 values: e < c ≤ b ≤ a < d) levels and lower potency in inhibiting δ-ALA-D activity than other diselenides. Compound e at all concentrations tested had no enzyme-mimetic property, but had radical-scavenging activity (≥5 μM) and protected against the oxidation of Fe2+ (50 μM); while compounds ad showed GST and DHA-mimetic activities and protected against the oxidation of Fe2+, but had not radical-scavenging activities. This study indicates that (i) 2,2′-dipyridyl diselenide (e) had better in vitro antioxidant effect than other diselenides and lower inhibitory effect on δ-ALA-D activity, (ii) the presence of pyridine ring is responsible for the best antioxidant effect of this compound, and (iii) 2,2′-dipyridyl diselenide acts by different mechanisms of other diselenides.


Selenium Organoselenium Diselenide Antioxidant 



The financial support by UFSM, CAPES, FAPERGS/CNPq (PRONEX) research grant # 10/0005-1 is gratefully acknowledged. C.W.N. is recipient of CNPq fellowship.


  1. 1.
    Arteel GE, Sies H (2001) The biochemistry of selenium and the glutathione system. Environ Toxicol Pharmacol 10:153–158. doi: 10.1016/S1382-6689(01)00078-3 PubMedCrossRefGoogle Scholar
  2. 2.
    Rossato JI, Ketzer LA, Centurião FB, Silva SJN, Ludtke DS, Zeni G, Braga AL, Rubin MA, Rocha JBT (2002) Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain. Neurochem Res 27:297–303. doi: 10.1023/A:1014907228580 PubMedCrossRefGoogle Scholar
  3. 3.
    Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104:6255–6285. doi: 10.1021/cr0406559 PubMedCrossRefGoogle Scholar
  4. 4.
    Nogueira CW, Rocha JBT (2010) Diphenyl diselenide a janus-faced molecule. J Braz Chem Soc 21:2055–2071. doi: 10.1590/S0103-50532010001100006 CrossRefGoogle Scholar
  5. 5.
    Nogueira CW, Meotti FC, Curte E, Pilissão C, Zeni G, Rocha JBT (2003) Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology 183:29–37. doi: 10.1016/S0300-483X(02)00423-7 PubMedCrossRefGoogle Scholar
  6. 6.
    Nogueira CW, Quinhones EB, Jung EAC, Zeni G, Rocha JBT (2003) Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm Res 63:52–56. doi: 10.1007/s000110300001 Google Scholar
  7. 7.
    Jesse CR, Rocha JBT, Nogueira CW, Savegnago L (2009) Further analysis of the antinociceptive action caused by p-methoxyl-diphenyl diselenide in mice. Pharmacol Biochem Behav 91:573–580. doi: 10.1016/j.pbb.2008.09.012 PubMedCrossRefGoogle Scholar
  8. 8.
    Machado MS, Rosa RM, Dantas AS, Reolon GK, Appelt HR, Braga AL, Henriques JAN, Roesler R (2006) An organic selenium compound attenuates apomorphine-induced stereotypy in mice. Neurosci Lett 410:198–202. doi: 10.1016/j.neulet.2006.09.079 PubMedCrossRefGoogle Scholar
  9. 9.
    Bruning CA, Prigol M, Roehrs JA, Nogueira CW, Zeni G (2009) Involvement of the serotonergic system in the anxiolytic-like effect caused by m-trifluoromethyl-diphenyl diselenide in mice. Behav Brain Res 205:511–517. doi: 10.1016/j.bbr.2009.08.010 PubMedCrossRefGoogle Scholar
  10. 10.
    Machado MS, Villela IV, Moura DJ, Rosa RM, Salvador M, Lopes NP, Braga AL, Roesler R, Saffi J, Henriques JAP (2009) 3′3-Ditrifluoromethyldiphenyl diselenide: a new organoselenium compound with interesting antigenotoxic and antimutagenic activities. Mutat Res Genet Toxicol Environ Mutagen 673:133–140. doi: 10.1016/j.mrgentox.2009.01.003 CrossRefGoogle Scholar
  11. 11.
    Wilhelm EA, Jesse CR, Nogueira CW, Savegnago L (2009) Introduction of trifluoromethyl group into diphenyl diselenide molecule alters its toxicity and protective effect against damage induced by 2-nitropropane in rats. Exp Toxicol Pathol 61:197–203. doi: 10.1016/j.etp.2008.08.003 PubMedCrossRefGoogle Scholar
  12. 12.
    Wilhelm EA, Jesse CR, Nogueira CW (2009) Protective effect of methoxyl-diphenyl diselenide in lethal acute liver failure induced by lipopolysaccharide and d-galactosamine in mice. Fundam Clin Pharmacol 23:727–734. doi: 10.1111/j.1472-8206.2009.00759.x PubMedCrossRefGoogle Scholar
  13. 13.
    Pinton S, Rocha JBT, Zeni G, Nogueira CW (2010) Organoselenium improves memory decline in mice: involvement of acetylcholinesterase activity. Neurosci Lett 472:56–60. doi: 10.1016/j.neulet.2010.01.057 PubMedCrossRefGoogle Scholar
  14. 14.
    Prigol M, Bruning CA, Zeni G, Nogueira CW (2009) Protective effect of disubstituted diaryl diselenides on cerebral oxidative damage caused by sodium nitroprusside. Biochem Eng J 45:94–99. doi: 10.1016/j.bej.2009.02.015 CrossRefGoogle Scholar
  15. 15.
    Shin KM, Shen L, Park SJ, Jeong JH, Lee KT (2009) Bis-(3-hydroxyphenyl) diselenide inhibits LPS-stimulated iNOS and COX-2 expression in RAW 264.7 macrophage cells through the NF-kappaB inactivation. J Pharm Pharmacol 61:479–486. doi: 10.1211/jpp/61.04.0010 PubMedGoogle Scholar
  16. 16.
    Demougeot C, Van Hoecke M, Bertrand N, Prigent-Tessier A, Mossiat C, Beley A, Marie C (2004) Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2′-dipyridyl in the rat photothrombotic ischemic stroke model. J Pharmacol Exp Ther 311:1080–1087. doi: 10.1124/jpet.104.072744 PubMedCrossRefGoogle Scholar
  17. 17.
    Van Hoecke M, Prigent-Tessier A, Bertrand N, Prevotat L, Marie C, Beley A (2005) Apoptotic cell death progression after photothrombotic focal cerebral ischaemia: effects of the lipophilic iron chelator 2,2’-dipyridyl. Eur J Neurosci 22:1045–1056. doi: 10.1111/j.1460-9568.2005.04297.x PubMedCrossRefGoogle Scholar
  18. 18.
    Paulmier C (1986) Selenium reagents and intermediates. In: Baldwin JE (ed) Organic synthesis. Pergamon, OxfordGoogle Scholar
  19. 19.
    Boduszek B, Gancarz R (1996) Pyridine-4-selenenyl bromides as new reagents for selenenylation of olefins. J Prakt Chem 338(2):186–189. doi: 10.1002/prac.19963380137 CrossRefGoogle Scholar
  20. 20.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi: 10.1016/0003-2697(79)90738-3 PubMedCrossRefGoogle Scholar
  21. 21.
    Yan LJ, Traber MG, Packer L (1995) Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem 228:349–351. doi: 10.1006/abio.1995.1362 PubMedCrossRefGoogle Scholar
  22. 22.
    Levine RL, Garland D, Oliver CN (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478PubMedCrossRefGoogle Scholar
  23. 23.
    Washburn MP, Wells WW (1999) Identification of the dehydroascorbic acid reductase and thioltransferase (glutaredoxin) activities of bovine erythrocytes glutathione peroxidase. Biochem Biophys Res Commun 257:567–571. doi: 10.1006/bbrc.1999.0508 PubMedCrossRefGoogle Scholar
  24. 24.
    Wells WW, Xu DP, Washburn MP (1995) Glutathione-dehydroascorbate oxidoreductases. Methods Enzymol 252:30–38PubMedCrossRefGoogle Scholar
  25. 25.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases—the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  26. 26.
    Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 153:1161–1168. doi: 10.1016/S0168-9452(02)00332-1 CrossRefGoogle Scholar
  27. 27.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3 PubMedCrossRefGoogle Scholar
  28. 28.
    Yoshino M, Murakami K (1998) Interaction of iron with polyphenolic compounds: application to antioxidant characterization. Anal Biochem 257:40–44. doi: 10.1006/abio.1997.2522 PubMedCrossRefGoogle Scholar
  29. 29.
    Nogueira CW, Soares FA, Nascimento PC, Muller D, Rocha JBT (2003) 2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury- and cadmium-induced inhibition of δ-aminolevulinate dehydratase. Toxicology 184:85–95. doi: 10.1016/S0300-483X(02)00575-9 PubMedCrossRefGoogle Scholar
  30. 30.
    Sassa S (1982) Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–145PubMedGoogle Scholar
  31. 31.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein–dye binding. Anal Biochem 72:248–254. doi: 10.1006/abio.1976.9999 PubMedCrossRefGoogle Scholar
  32. 32.
    Böhm H, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. ChemBioChem 5:637–643. doi: 10.1002/cbic.200301023 PubMedCrossRefGoogle Scholar
  33. 33.
    Dolbier WR Jr (2005) Fluorine chemistry at the millennium. J Fluor Chem 126:157–163. doi: 10.1016/j.jfluchem.2004.09.033 CrossRefGoogle Scholar
  34. 34.
    Meotti FC, Stangherlin EC, Zeni G, Nogueira CW, Rocha JB (2004) Protective role of aryl and alkyl diselenides on lipid peroxidation. Environ Res 94:276–282. doi: 10.1016/S0013-9351(03)00114-2 PubMedCrossRefGoogle Scholar
  35. 35.
    Prigol M, Bruning CA, Godoi B, Nogueira CW, Zeni G (2009) m-Trifluoromethyl-diphenyl diselenide attenuates pentylenetetrazole-induced seizures in mice by inhibiting GABA uptake in cerebral cortex slices. Pharmacol Rep 61:1127–1133PubMedGoogle Scholar
  36. 36.
    Xu DP, Washburn MP, Sun GP, Wells WW (1996) Purification and characterization of a glutathione dependent dehydroascorbate reductase from human erythrocytes. Biochem Biophys Res Commun 221:117–121. doi: 10.1006/bbrc.1996.0555 PubMedCrossRefGoogle Scholar
  37. 37.
    Fiander H, Schneider H (1999) Compounds that induce isoforms of glutathione S-transferase with properties of a critical enzyme in defense against oxidative stress. Biochem Biophys Res Commun 262:591–595. doi: 10.1006/bbrc.1999.1262 PubMedCrossRefGoogle Scholar
  38. 38.
    Jung CH, Washburn MP, Wells WW (2002) Ebselen has dehydroascorbate reductase and thioltransferase-like activities. Biochem Biophys Res Commun 291:550–553. doi: 10.1006/bbrc.2002.6477 PubMedCrossRefGoogle Scholar
  39. 39.
    Luchese C, Nogueira CW (2010) Diphenyl diselenide in its selenol form has dehydroascorbate reductase and glutathione S-transferase-like activity dependent on the glutathione content. J Pharm Pharmacol 62:1146–1151. doi: 10.1111/j.2042-7158.2010.01147.x PubMedCrossRefGoogle Scholar
  40. 40.
    Apak R, Guclu K, Ozyurek M, Celik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160:413–419. doi: 10.1007/s00604-007-0777-0 CrossRefGoogle Scholar
  41. 41.
    Krishnaraju AV, Rao CV, Rao VN, Reddy KN, Trimurtulu G (2009) In vitro and in vivo antioxidant activity of Aphanamixis polystachya Bark. Am J Infect Dis 2:60–67. doi: 10.3844/ajidsp.2009.60.67 Google Scholar
  42. 42.
    Thaiponga K, Boonprakoba U, Crosbyb K, Cisneros-Zevallosc L, Byrnec DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. doi: 10.1016/j.jfca.2006.01.003 CrossRefGoogle Scholar
  43. 43.
    Lee BW, Lee JH, Gal SW, Moon YH, Park KH (2006) Selective ABTS radical scavenging activity of prenylated flavonoids from Cudrania tricuspidata. Biosci Biotechnol Biochem 70:427–432PubMedCrossRefGoogle Scholar
  44. 44.
    Halliwell B, Gutteridge JMC (1990) Role of free-radicals and catalytic metal-ions in human-disease—an overview. Methods Enzymol 186:1–85PubMedCrossRefGoogle Scholar
  45. 45.
    Luchese C, Zeni G, Rocha JBT, Nogueira CW, Santos FW (2007) Cadmium inhibits delta-aminolevulinate dehydratase from rat lung in vitro: interaction with chelating and antioxidant agents. Chem Biol Interact 165:127–137. doi: 10.1016/j.cbi.2006.11.007 PubMedCrossRefGoogle Scholar
  46. 46.
    Bruning CA, Prigol M, Barancelli DA, Nogueira CW, Zeni G (2009) Disubstituted diaryl diselenides inhibit delta-ALA-D and Na(+), K(+)-ATPase activities in rat brain homogenates in vitro. Mol Cell Biochem 332:17–24. doi: 10.1007/s11010-009-0169-3 PubMedCrossRefGoogle Scholar
  47. 47.
    Souza AG, Luchese C, Neto LSS, Nogueira CW (2009) Antioxidant effect of a novel class of telluroacetilene compounds: studies in vitro and in vivo. Life Sci 84:351–357. doi: 10.1016/j.lfs.2008.12.021 PubMedCrossRefGoogle Scholar
  48. 48.
    Gay BM, Luchese C, Nogueira CW, Wendler P, Macedo A, Dos Santos AA (2010) Antioxidant effect of functionalized alkyl-organotellurides: a study. J Enzyme Inhib Med Chem 25:467–475. doi: 10.3109/14756360903257892 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Cristiane Luchese
    • 1
  • Ricardo Brandão
    • 2
  • Carmine I. Acker
    • 2
  • Cristina W. Nogueira
    • 2
  1. 1.Mestrado em Nanociências, Centro de Ciências TecnológicasCentro Universitário FranciscanoSanta MariaBrazil
  2. 2.Curso de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations