Molecular and Cellular Biochemistry

, Volume 366, Issue 1–2, pp 355–362 | Cite as

Monocyte chemoattractant protein-1 mediates angiotensin II-induced vascular smooth muscle cell proliferation via SAPK/JNK and ERK1/2

  • Hua-Li Yao
  • Feng-Hou Gao
  • Zong-Zhuang Li
  • Hong-Xian Wu
  • Meng-Dan Xu
  • Zhi Zhang
  • Qiu-Yan DaiEmail author


Abnormal vascular smooth muscle cells proliferation is the pathophysiological basis of cardiovascular diseases, such as hypertension, atherosclerosis, and restenosis after angioplasty. Angiotensin II can induce abnormal proliferation of vascular smooth muscle cells, but the molecular mechanisms of this process remain unclear. Here, we explored the role and molecular mechanism of monocyte chemotactic protein-1, which mediated angiotensin II-induced proliferation of rat aortic smooth muscle cells. 1,000 nM angiotensin II could stimulate rat aortic smooth muscle cells' proliferation by angiotensin II type 1 receptor (AT1R). Simultaneously, angiotensin II increased monocyte chemotactic protein-1 expression and secretion in a dose-and time-dependent manner through activation of its receptor AT1R. Then, monocyte chemotactic protein-1 contributed to angiotensin II-induced cells proliferation by CCR2. Furthermore, we found that intracellular ERK and JNK signaling molecules were implicated in angiotensin II-stimulated monocyte chemotactic protein-1 expression and proliferation mediated by monocyte chemotactic protein-1. These results contribute to a better understanding effect on angiotensin II-induced proliferation of rat smooth muscle cells.


Angiotensin II Monocyte chemotactic protein-1 Vascular smooth muscle cell Proliferation 



This project was supported by Research Grant 09JC1412300 from the Shanghai Science Committee, Shanghai, China.


  1. 1.
    Pasterkamp G, de Kleijn DP, Borst C (2000) Arterial remodeling in atherosclerosis, restenosis and after alteration of blood flow: potential mechanisms and clinical implications. Cardiovasc Res 45:843–852PubMedCrossRefGoogle Scholar
  2. 2.
    Rzucidlo EM, Martin KA, Powell RJ (2007) Regulation of vascular smooth muscle cell differentiation. J Vasc Surg 45:A25–A32PubMedCrossRefGoogle Scholar
  3. 3.
    Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801PubMedCrossRefGoogle Scholar
  4. 4.
    Orr AW, Hastings NE, Blackman BR, Wamhoff BR (2010) Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 7:168–180CrossRefGoogle Scholar
  5. 5.
    Pasterkamp G, Galis ZS, de Kleijn DP (2004) Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol 24:650–657PubMedCrossRefGoogle Scholar
  6. 6.
    VanBavel E, Mulvany MJ (2006) Integrins in hypertensive remodeling. Hypertension 47:147–148PubMedCrossRefGoogle Scholar
  7. 7.
    Baker KM, Booz GW, Dostal DE (1992) Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol 54:227–241PubMedCrossRefGoogle Scholar
  8. 8.
    De Ciuceis C, Amiri F, Brassard P et al (2005) Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol 25:2106–2113PubMedCrossRefGoogle Scholar
  9. 9.
    Zuo L, Ushio-Fukai M, Ikeda S, Hilenski L, Patrushev N, Alexander RW (2005) Caveolin-1 is essential for activation of Rac1 and NAD(P)H oxidase after angiotensin II type 1 receptor stimulation in vascular smooth muscle cells: role in redox signaling and vascular hypertrophy. Arterioscler Thromb Vasc Biol 25:1824–1830PubMedCrossRefGoogle Scholar
  10. 10.
    Horiuchi M, Cui TX, Li Z, Li JM, Nakagami H, Iwai M (2003) Fluvastatin enhances the inhibitory effects of a selective angiotensin II type 1 receptor blocker, valsartan, on vascular neointimal formation. Circulation 107:106–112PubMedCrossRefGoogle Scholar
  11. 11.
    Shi R, Hu C, Yuan Q, Yang T, Peng J, Li Y, Bai Y, Cao Z, Cheng G, Zhang G (2011) Involvement of vascular peroxidase 1 in angiotensin II-induced vascular smooth muscle cell proliferation. Cardiovasc Res 91:27–36PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng JF, Ni GH, Chen MF, Li YJ, Wang YJ, Wang CL, Yuan Q, Shi RZ, Hu CP, Yang TL (2011) Involvement of profilin-1 in angiotensin II-induced vascular smooth muscle cell proliferation. Vascul Pharmacol 55:34–41PubMedCrossRefGoogle Scholar
  13. 13.
    Haider A, Lee I, Grabarek J, Darzynkiewicz Z, Ferreri NR (2003) Dual functionality of cyclooxygenase-2 as a regulator of tumor necrosis factor-mediated G1 shortening and nitric oxide-mediated inhibition of vascular smooth muscle cell proliferation. Circulation 108:1015–1021PubMedCrossRefGoogle Scholar
  14. 14.
    Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897PubMedCrossRefGoogle Scholar
  15. 15.
    Roque M, Kim WJ, Gazdoin M, Malik A, Reis ED, Fallon JT, Badimon JJ, Charo IF, Taubman MB (2002) CCR2 deficiency decreases intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 22:554–559PubMedCrossRefGoogle Scholar
  16. 16.
    Ishibashi M, Egashira K, Zhao Q, Hiasa K, Ohtani K, Ihara Y et al (2004) Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 24:e174–e178PubMedCrossRefGoogle Scholar
  17. 17.
    Pan Q, Yang XH, Cheng YX (2009) Angiotensin II stimulates MCP-1 production in rat glomerular endothelial cells via NAD(P)H oxidase-dependent nuclear factor-kappa B signaling. Braz J Med Biol Res 42:531–536PubMedCrossRefGoogle Scholar
  18. 18.
    Fu Z, Wang M, Gucek M et al (2009) Milk fat globule protein epidermal growth factor-8: a pivotal relay element within the angiotensin II and monocyte chemoattractant protein-1 signaling cascade mediating vascular smooth muscle cells invasion. Circ Res 104:1337–1346PubMedCrossRefGoogle Scholar
  19. 19.
    Viedt C, Vogel J, Athanasiou T, Shen W, Orth SR, Kübler W, Kreuzer J (2002) Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1. Arterioscler Thromb Vasc Biol 22:914–920PubMedCrossRefGoogle Scholar
  20. 20.
    Spinetti G, Wang M, Monticone R, Zhang J, Zhao D, Lakatta EG (2004) Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler Thromb Vasc Biol 24:1397–1402PubMedCrossRefGoogle Scholar
  21. 21.
    Ma J, Wang Q, Fei T, Han JD, Chen YG (2007) MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 109:987–994PubMedCrossRefGoogle Scholar
  22. 22.
    Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796PubMedCrossRefGoogle Scholar
  23. 23.
    Ip JH, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH (1990) Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 15:1667–1687PubMedCrossRefGoogle Scholar
  24. 24.
    Nagata D, Takeda R, Sata M, Satonaka H, Suzuki E, Nagano T, Hirata Y (2004) AMP-Activated Protein Kinase Inhibits Angiotensin II-Stimulated Vascular Smooth Muscle Cell Proliferation. Circulation 110:444–451PubMedCrossRefGoogle Scholar
  25. 25.
    Kim JE, Choi HC (2010) Losartan Inhibits Vascular Smooth Muscle Cell Proliferation through Activation of AMP-Activated Protein Kinase. Korean J Physiol Pharmacol 14:299–304PubMedCrossRefGoogle Scholar
  26. 26.
    Ishibashi M, Hiasa K, Zhao Q et al (2004) Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res 94:1203–1210PubMedCrossRefGoogle Scholar
  27. 27.
    Takahashi M, Suzuki E, Takeda R et al (2008) Angiotensin II and tumor necrosis factor-alpha synergistically promote monocyte chemoattractant protein-1 expression: roles of NF-kappaB, p38, and reactive oxygen species. Am J Physiol Heart Circ Physiol 294:H2879–H2888PubMedCrossRefGoogle Scholar
  28. 28.
    Marrero MB, Schieffer B, Li B, Sun J, Harp JB, Ling BN (1997) Role of Janus Kinase/Signal Transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 272:24684–24690PubMedCrossRefGoogle Scholar
  29. 29.
    Hong HJ, Chan P, Liu JC, Juan SH, Huang MT, Lin JG, Cheng TH (2004) Angiotensin II induces endothelin-1 gene expression via extracellular signal-regulated kinase pathway in rat aortic smooth muscle cells. Cardiovasc Res 61:159–168PubMedCrossRefGoogle Scholar
  30. 30.
    Schorb W, Conrad KM, Singer HA, Dostal DE, Baker KM (1995) Angiotensin II is a potent stimulator of MAP-kinase activity in neonatal rat cardiac fibroblasts. J Mol Cell Cardiol 27:1151–1160PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Hua-Li Yao
    • 1
  • Feng-Hou Gao
    • 2
  • Zong-Zhuang Li
    • 1
  • Hong-Xian Wu
    • 1
  • Meng-Dan Xu
    • 1
  • Zhi Zhang
    • 1
  • Qiu-Yan Dai
    • 1
    Email author
  1. 1.Cardiac Vascular UnitShanghai First People’s Hospital Affiliated to Shanghai Jiao-Tong UniversityShanghaiChina
  2. 2.No. 3 People’s Hospital Affiliated to Shanghai Jiao-Tong University School of MedicineShanghaiChina

Personalised recommendations