Molecular and Cellular Biochemistry

, Volume 365, Issue 1–2, pp 65–76 | Cite as

The emerging role of stem cells in ocular neurodegeneration: hype or hope?



Affecting over a hundred million individuals worldwide, retinal diseases are among the leading causes of irreversible visual impairment and blindness. Thus, an appropriate study models, especially animal models, are essential to furthering our understanding of the etiology, pathology, and progression of these diseases. In this review, we provide an overview of retinal disorders in the context of biotherapeutic approaches in these disorders.


Retinal degeneration Stem cell Regeneration Transplantation 



We sincerely acknowledge Mr. Rahul Tyagi for the technical assistance in revising the manuscript.


  1. 1.
    Ramon y Cajal S (1892) La retine des vkrtebres. La Cellule 9:17–257Google Scholar
  2. 2.
    Miller RH, Ffrench-Constant C, Raff MC (1989) The macroglial cells of the rat optic nerve. Annu Rev Neurosci 12:517–534PubMedCrossRefGoogle Scholar
  3. 3.
    Miller RH, Fulton BP, Raff MC (1989) A novel type of glial cell associated with nodes of Ranvier in rat optic nerve. Eur J Neurosci 1:172–180PubMedCrossRefGoogle Scholar
  4. 4.
    Resnikoff S, Pascolini D, Etya’ale D et al (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851PubMedGoogle Scholar
  5. 5.
    Krishnan T, Ravindran RD, Murthy GV (2010) Prevalence of early and late age-related macular degeneration in India: the INDEYE study. Invest Ophthalmol Vis Sci 51:701–707PubMedCrossRefGoogle Scholar
  6. 6.
    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267PubMedCrossRefGoogle Scholar
  7. 7.
    Kertes PJ, Johnson TM (eds) (2007) Evidence based eye care. Lippincott Williams & Wilkins: Philadelphia, PA. ISBN 0-7817-6964-7Google Scholar
  8. 8.
    Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168PubMedCrossRefGoogle Scholar
  9. 9.
    Ahmad I, Das AV, James J et al (2004) Neural stem cells in the mammalian eye: types and regulation. Semin Cell Dev Biol 15:53–62PubMedCrossRefGoogle Scholar
  10. 10.
    Asami M, Sun G, Yamaguchi M et al (2007) Multipotent cells from mammalian iris pigment epithelium. Dev Biol 304:433–446PubMedCrossRefGoogle Scholar
  11. 11.
    Moshiri A, Reh TA (2004) Persistent progenitors at the retinal margin of ptc± mice. J Neurosci 24:229–237PubMedCrossRefGoogle Scholar
  12. 12.
    Cicero SA, Johnson D, Reyntjens S et al (2009) Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci USA 106:6685–6690PubMedCrossRefGoogle Scholar
  13. 13.
    Gualdoni S, Baron M, Lakowski J et al (2010) Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells 28:1048–1059PubMedCrossRefGoogle Scholar
  14. 14.
    Mathur D, Pereira WC, Anand A (2011) Emergence of chondrogenic progenitor stem cells in transplantation biology-prospects and drawbacks. J Cell Biochem. doi: 10.1002/jcb.23367 Google Scholar
  15. 15.
    Haruta M, Takahashi M (2005) Embryonic stem cells: potential source for ocular repair. Semin Ophthalmol 20:17–23PubMedCrossRefGoogle Scholar
  16. 16.
    FDA approves human embryonic stem cell study. January 23, 2009. Retrieved May 1, 2010
  17. 17.
    Keirstead HS, Nistor G, Bernal G et al (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705PubMedCrossRefGoogle Scholar
  18. 18.
    Wang NK, Tosi J, Kasanuki JM et al (2010) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89:911–919PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer JS, Katz ML, Maruniak JA et al (2006) Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells 24:274–283PubMedCrossRefGoogle Scholar
  20. 20.
    Schraermeyer U, Thumann G, Luther T et al (2001) Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transplant 10:673–680PubMedGoogle Scholar
  21. 21.
    Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79PubMedCrossRefGoogle Scholar
  22. 22.
    MacLaren RE, Pearson RA, MacNeil A et al (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207PubMedCrossRefGoogle Scholar
  23. 23.
    Otani A, Dorrell MI, Kinder K (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114:765–774PubMedGoogle Scholar
  24. 24.
    Singh T, Prabhakar S, Gupta A et al (2011) Recruitment of stem cells into the injured retina after laser injury. Stem Cells Dev. doi:  10.1089/scd.2011.0002
  25. 25.
    Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084PubMedCrossRefGoogle Scholar
  26. 26.
    Himes BT, Neuhuber B, Coleman C et al (2006) Recovery of functions resulting from grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 20:278–296PubMedCrossRefGoogle Scholar
  27. 27.
    Muthaian R, Minhas G, Anand A (2011) Pathophysiology of stroke and stroke induced retinal ischemia: emerging role of stem cells. J Cell Physiol. doi: 10.1002/jcp.23048
  28. 28.
    Lu B, Wang S, Girman S et al (2010) Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration. Exp Eye Res 91:449–455PubMedCrossRefGoogle Scholar
  29. 29.
    Andrews EM, Tsai SY, Johnson SC et al (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211:588–592PubMedCrossRefGoogle Scholar
  30. 30.
    Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650PubMedCrossRefGoogle Scholar
  31. 31.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  32. 32.
    Horwitz EM, Le Blanc K, Dominici M et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395PubMedCrossRefGoogle Scholar
  33. 33.
    D’Cruz PM, Yasumura D, Weir J et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651PubMedCrossRefGoogle Scholar
  34. 34.
    Gal A, Li Y, Thompson DA et al (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26:27–270Google Scholar
  35. 35.
    Inoue Y, Iriyama A, Ueno S et al (2007) Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85:234–241PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang Y, Wang W (2010) Effects of bone marrow mesenchymal stem cell transplantation on light-damaged retina. Invest Ophthalmol Vis Sci 51:3742–3748PubMedCrossRefGoogle Scholar
  37. 37.
    Arnhold S, Absenger Y, Klein H et al (2007) Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Arch Clin Exp Ophthalmol 245:414–422PubMedCrossRefGoogle Scholar
  38. 38.
    Johnson TV, Bull ND, Hunt DP et al (2010) Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 51:2051–2059PubMedCrossRefGoogle Scholar
  39. 39.
    Li N, Li XR, Yuan JQ (2009) Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 247:503–514PubMedCrossRefGoogle Scholar
  40. 40.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  41. 41.
    Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  42. 42.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  43. 43.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317PubMedCrossRefGoogle Scholar
  44. 44.
    Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like stat. Nature 448:318–324PubMedCrossRefGoogle Scholar
  45. 45.
    Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49PubMedCrossRefGoogle Scholar
  46. 46.
    Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886PubMedCrossRefGoogle Scholar
  47. 47.
    Karumbayaram S, Novitch BG, Patterson M et al (2009) Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27:806–811PubMedCrossRefGoogle Scholar
  48. 48.
    Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923PubMedCrossRefGoogle Scholar
  49. 49.
    Mauritz C, Schwanke K, Reppel M et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517PubMedCrossRefGoogle Scholar
  50. 50.
    Narazaki G, Uosaki H, Teranishi M et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118:498–506PubMedCrossRefGoogle Scholar
  51. 51.
    Hirami Y, Osakada F, Takahashi K et al (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458:126–131PubMedCrossRefGoogle Scholar
  52. 52.
    Osakada F, Jin ZB, Hirami Y et al (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179PubMedCrossRefGoogle Scholar
  53. 53.
    Chen M, Chen Q, Sun X et al (2010) Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Invest Ophthalmol Vis Sci 51:5970–5978PubMedCrossRefGoogle Scholar
  54. 54.
    Parameswaran S, Balasubramanian S, Babai N et al (2010) Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 28:695–703PubMedCrossRefGoogle Scholar
  55. 55.
    Tucker BA, Park IH, Qi SD et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 29:e18992CrossRefGoogle Scholar
  56. 56.
    Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29:825–835PubMedCrossRefGoogle Scholar
  57. 57.
    Puzio-Kuter AM, Levine AJ (2009) Stem cell biology meets p53. Nat Biotechnol 27:914–915PubMedCrossRefGoogle Scholar
  58. 58.
    Enzmann V, Yolcu E, Kaplan HJ et al (2009) Stem cells as tools in regenerative therapy for retinal degeneration. Arch Ophthalmol 127:563–571PubMedCrossRefGoogle Scholar
  59. 59.
    Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545PubMedCrossRefGoogle Scholar
  60. 60.
    Butler JM, Guthrie SM, Koc M et al (2005) SDF-1 is both necessary a sufficient to promote proliferative retinopathy. J Clin Invest 115:86–93PubMedGoogle Scholar
  61. 61.
    Bhutto IA, McLeod DS, Merges C et al (2006) Localisation of SDF-1 and its receptor CXCR4 in retina and choroid of aged human eyes and in eyes with age related macular degeneration. Br J Ophthalmol 90:906–910PubMedCrossRefGoogle Scholar
  62. 62.
    Crisostomo PR, Markel TA, Wang Y et al (2008) Surgically relevant aspects of stem cell paracrine effects. Surgery 143:577–581PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang P, Li J, Liu Y et al (2009) Human neural stem cell transplantation attenuates apoptosis and improves neurological functions after cerebral ischemia in rats. Acta Anaesthesiol Scand 53:1184–1191PubMedCrossRefGoogle Scholar
  64. 64.
    Simard AR, Soulet D, Gowing G et al (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502PubMedCrossRefGoogle Scholar
  65. 65.
    Harada T, Harada C, Kohsaka S et al (2002) Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22:9228–9236PubMedGoogle Scholar
  66. 66.
    Vandervelde S, van Luyn MJ, Tio RA et al (2005) Signaling factors in stem cell mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376PubMedCrossRefGoogle Scholar
  67. 67.
    Oh JY, Kim MK, Shin MS et al (2008) The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells 26:1047–1055PubMedCrossRefGoogle Scholar
  68. 68.
    Levkovitch-Verbin H (2004) Animal models of optic nerve diseases. Eye (Lond) 18:1066–1074CrossRefGoogle Scholar
  69. 69.
    Lund R (2008) Cell-based therapies to limit photoreceptor degeneration. Arch Soc Esp Oftalmol 83:457–464PubMedCrossRefGoogle Scholar
  70. 70.
    Lund RD, Wang S, Klimanskaya I et al (2006) Human embryonic stem cell derived cells rescue visual function in dystrophic rats. Cloning Stem Cell 8:189–199CrossRefGoogle Scholar
  71. 71.
    Yu S, Tanabe T, Dezawa M et al (2006) Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun 344:1071–1079PubMedCrossRefGoogle Scholar
  72. 72.
    Elizabeth Rakoczy P, Yu MJ, Nusinowitz S et al (2006) Mouse models of age-related macular degeneration. Exp Eye Res 82:741–752PubMedCrossRefGoogle Scholar
  73. 73.
    Ambati J, Anand A, Fernandez S et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397PubMedCrossRefGoogle Scholar
  74. 74.
    Kern TS, Tang J, Berkowitz BA (2010) Validation of structural and functional lesions of diabetic retinopathy in mice. Mol Vis 16:2121–2131PubMedGoogle Scholar
  75. 75.
    Kusari J, Padillo E, Zhou SX et al (2011) Effect of brimonidine on retinal and choroidal neovascularization in a mouse model of retinopathy of prematurity and laser-treated rats. Invest Ophthalmol Vis Sci 52:5424–5431PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang X, Sun P, Wang J et al (2011) Diffusion tensor imaging detects retinal ganglion cell axon damage in the mouse model of optic nerve crush. Invest Ophthalmol Vis Sci 52:7001–7006PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Neuroscience Research Laboratory, Department of NeurologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  2. 2.Department of NeurologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  3. 3.Stem Cell Biology LaboratoryNational Institute of ImmunologyNew DelhiIndia

Personalised recommendations