Molecular and Cellular Biochemistry

, Volume 364, Issue 1–2, pp 351–361 | Cite as

UVA/B exposure promotes the biosynthesis of dehydroretinol in cultured human keratinocytes

  • Juliana I. Tafrova
  • Adriana Pinkas-Sarafova
  • Erik Stolarzewicz
  • Kathlyn A. Parker
  • Marcia Simon


Retinol and its metabolites modulate epithelial differentiation and serve as cellular UV sensors through changes in retinoid status. Of note is the dehydroretinol family which may serve functions distinct from parental retinol. This study focuses on the metabolism of this family and its potential participation in the response of normal epidermal human keratinocytes to UV irradiation. There were three findings. First, keratinocytes contain two pools of dehydroretinyl esters, one of which is shielded from UVB-, but not from UVA-induced decomposition. Second, using a novel in vitro assay we demonstrated that both UVA and UVB promote dehydroretinol biosynthesis in keratinocytes, but only UVB exposure promotes retinoid ester accretion by enhancing the activity of at least one acyl transferase. Finally, dehydroretinol sufficiency reduces UVA/B driven apoptosis more effectively than retinol sufficiency. This may in part be due to differences in the expression of Fas ligand, which we found to be upregulated by retinoic acid, but not dehydroretinoic acid. These observations implicate a role of dehydroretinol and its metabolites in UVA/B adaptation. Thus, the keratinocyte response to UV is jointly shaped by both the retinoids and dehydroretinoids.


Vitamin A2 Dehydroretinol 3,4-Didehydroretinoic acid Retinol UVA UVB 



We thank Dr. Betsy Sutherland, Dr. John Sutherland, Dr. Stefan Tafrov, and John Trunk for giving us the opportunities to perform the UV irradiations experiments in their laboratories at Brookhaven National Laboratories. We especially appreciate their helpful advice, support and understanding. This research was funded in part by a grant to Prof. M. Simon from Unilever Research and Development, US. M. Simon is a consultant to Unilever Research and Development, US.

Supplementary material

11010_2012_1237_MOESM1_ESM.pdf (449 kb)
Supplementary material 1 (PDF 449 kb)


  1. 1.
    Vollberg TM, Nervi C, George MD et al (1992) Retinoic acid receptors as regulators of human epidermal keratinocyte differentiation. Mol Endocrinol 6(5):667–676PubMedCrossRefGoogle Scholar
  2. 2.
    Noy N (2010) Between death and survival: retinoic acid in regulation of apoptosis. Annu Rev Nutr 30:201–217PubMedCrossRefGoogle Scholar
  3. 3.
    De LeenHeer AP, Lambert WE, Claeys I (1982) All-trans-retinoic acid: measurement of reference values in human serum by high performance liquid chromatography. J Lipid Res 23:1362–1367PubMedGoogle Scholar
  4. 4.
    Soprano D, Blaner WS (1994) Plasma retinol-binding protein. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven Press, New York, pp 257–282Google Scholar
  5. 5.
    Randolph RK, Simon M (1993) Characterization of retinol metabolism in cultured human epidermal keratinocytes. J Biol Chem 268(13):9198–9205PubMedGoogle Scholar
  6. 6.
    Jurukovski V, Simon M (1999) Reduced lecithin:retinol acyltransferase activity in cultured squamous cell carcinoma lines results in increased substrate-driven retinoic acid synthesis. Biochim Biophys Acta 1436:479–490PubMedGoogle Scholar
  7. 7.
    Törmä H, Vahlquist A (1990) Vitamin A esterification in human epidermis: a relation to keratinocyte differentiation. J Invest Dermatol 94(1):132–138PubMedCrossRefGoogle Scholar
  8. 8.
    Kurlandsky SB, Duell EA, Kang S, Voorhees JJ (1996) Autoregulation of retinoic acid biosynthesis through regulation of retinol esterification in human keratinocytes. J Biol Chem 271:15346–15352PubMedCrossRefGoogle Scholar
  9. 9.
    Shih MYS, Kane MA, Zhou P, Yen CLE, Streeper RS, Napoli JL, Farese RV Jr (2009) Retinol esterification by DGAT1 is essential for retinoid homeostasis in murine skin. J Biol Chem 284(7):4292–4299PubMedCrossRefGoogle Scholar
  10. 10.
    Yen CL, Monetti M, Burri BJ, Farese RV Jr (2005) The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J Lipid Res 46(7):1502–1511PubMedCrossRefGoogle Scholar
  11. 11.
    Napoli JL (1996) Retinoic acid biosynthesis and metabolism. FASEB J 10:993–1001PubMedGoogle Scholar
  12. 12.
    Jurukovski V, Markova NG, Karaman-Jurukovska N, Randolph KR, Su J, Napoli JL, Simon M (1999) Cloning and characterization of retinol dehydrogenase transcripts expressed in human epidermal keratinocytes. Mol Genet Metab 67:62–73PubMedCrossRefGoogle Scholar
  13. 13.
    Roos TC, Jugert FK, Merk HF, Bickers DR (1998) Retinoid metabolism in the skin. Pharmacol Rev 50(2):315–333PubMedGoogle Scholar
  14. 14.
    Achkar CC, Derguini F, Blumberg B, Langston A, Levin AA, Speck J, Evans RM, Bolado J Jr, Nakanishi K, Buck J, Gudas LJ (1996) 4-Oxoretinol, a new natural ligand and transactivator of the retinoic acid receptors. Proc Natl Acad Sci USA 93(10):4879–4884PubMedCrossRefGoogle Scholar
  15. 15.
    Lane MA, Chen AC, Roman SD, Derguini F, Gudas LJ (1999) Removal of LIF (leukemia inhibitory factor) results in increased vitamin A (retinol) metabolism to 4-oxoretinol in embryonic stem cells. Proc Natl Acad Sci USA 96(23):13524–13529PubMedCrossRefGoogle Scholar
  16. 16.
    Lederer E, Rathmann FH (1938) A physico-chemical and biochemical study of vitamin A2. Biochem J 80:1252–1261Google Scholar
  17. 17.
    Wald G (1939) On the distribution of vitamins A(1) and A(2). J Gen Physiol 22(3):391–415PubMedCrossRefGoogle Scholar
  18. 18.
    Werten PJL, Roll B, Van Aalten DMF, DeJong WW (2000) Gecko ι-crystallin: how cellular retinol binding protein became an eye lens ultraviolet filter. Proc Natl Acad Sci USA 97(7):3282–3287PubMedCrossRefGoogle Scholar
  19. 19.
    Vahlquist A (1980) The identification of dehydroretinol (vitamin A2) in human skin. Experientia 36:317–318PubMedCrossRefGoogle Scholar
  20. 20.
    Rollman O, Wood EJ, Olsson MJ, Cunliffe WJ (1993) Biosynthesis of 3,4-didehydroretinol from retinol by human skin keratinocytes in culture. Biochem J 293:675–682PubMedGoogle Scholar
  21. 21.
    Torma H, Vahlquist A (1990) Vitamin A esterification in human epidermis: a relation to keratinocytes differentiation. J Invest Dermatol 94(1):132–138PubMedCrossRefGoogle Scholar
  22. 22.
    Randolph RK, Siegenthaler G (1999) Vitamin A homeostasis in human epidermis: native retinoid composition and metabolism. In: Blaner WS, Nau H (eds) Handbook of experimental pharmacology, retinoids. Springer, BerlinGoogle Scholar
  23. 23.
    Torma H, Asselineau D, Andersson E et al (1994) Biologic activities of retinoic acid and 3,4-didehydroretinoic acid in human keratinocytes are similar and correlate with receptor affinities and transactivation properties. J Invest Dermatol 102:49–54PubMedCrossRefGoogle Scholar
  24. 24.
    Goswami UC, Sharma N (2005) Efficiency of a few retinoids and carotenoids in vivo in controlling benzo[a]pyrene-induced forestomach tumour in female Swiss mice. Br J Nutr 94:540–543PubMedCrossRefGoogle Scholar
  25. 25.
    Green AC, Wallingford SC, McBride P (2011) Childhood exposure to ultraviolet radiation and harmful skin effects: epidemiological evidence. Prog Biophys Mol Biol 107(3):349–355Google Scholar
  26. 26.
    Ramos J, Villa J, Ruiz A, Armstrong R, Matta J (2004) UV dose determines key characteristics of nonmelanoma skin cancer. Cancer Epidemiol Biomarkers Prev 13(12):2006–2011PubMedGoogle Scholar
  27. 27.
    Gandini S, Autier P, Boniol M (2011) Reviews on sun exposure and artificial light and melanoma. Prog Biophys Mol Biol 107(3):362–366Google Scholar
  28. 28.
    Mrass P, Rendl M, Mildner M, Gruber F, Lengauer B, Ballaun C, Eckhart L, Tschachler E (2004) Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: a possible explanation for tumor preventive action of retinoids. Cancer Res 64:6542–6548PubMedCrossRefGoogle Scholar
  29. 29.
    Rheinwald JG, Beckett MA (1981) Tumorigenic keratinocytes lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas. Cancer Res 41:1657–1663PubMedGoogle Scholar
  30. 30.
    Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344PubMedCrossRefGoogle Scholar
  31. 31.
    Barua AB (1991) Analysis of water-soluble compounds: glucuronides. Methods Enzymol 189:136–145CrossRefGoogle Scholar
  32. 32.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917PubMedCrossRefGoogle Scholar
  33. 33.
    Klaidman LK, Leung AC, Adams JD Jr (1995) High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal Biochem 228:312–327PubMedCrossRefGoogle Scholar
  34. 34.
    Pinkas-Sarafova A, Markova NG, Simon M (2005) Dynamic changes in nicotinamide pyridine dinucleotide content in normal human epidermal keratinocytes and their effect on retinoic acid biosynthesis. Biochem Biophys Res Commun 336:554–564PubMedCrossRefGoogle Scholar
  35. 35.
    Jagger J (1961) A small and inexpensive ultraviolet dose-rate meter useful in biological experiments. Radiat Res 14:394–403PubMedCrossRefGoogle Scholar
  36. 36.
    Patel JB, Huynh CK, Handratta VD, Gediya LK, Brodie AMH, Goloubeva OG, Clement OO, Nanne IP, Soprano DR, Njar VCO (2004) Novel retinoic acid metabolism blocking agents endowed with multiple biological activities are efficient growth inhibitors of human breast and prostate cancer cells in vitro and a human breast tumor xenograft in nude mice. J Med Chem 47(27):6716–6729PubMedCrossRefGoogle Scholar
  37. 37.
    Hashimoto N, Fujimoto Y (1999) One step and convenient preparations of 4-hydroxyretinal and 4-oxoretinal. Synth Commun 29:3793–3797CrossRefGoogle Scholar
  38. 38.
    Tanaka H, Kagechika H, Shudo K (1995) Specific oxidation of retinoic acid to 4-oxo-retinoic acid in diluted acid solutions. Chem Pharm Bull 43(2):356–358CrossRefGoogle Scholar
  39. 39.
    Tosukhowong P, Supasiri T (1985) Preparation of [4-3H]-3-dehydroretinol by sodium borotritide reduction. J Label Compd Radiopharm 22:925–930CrossRefGoogle Scholar
  40. 40.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45PubMedCrossRefGoogle Scholar
  41. 41.
    Anderson E, Rosdahl I, Torma H, Vahlquist A (1999) Ultraviolet radiation depletes cellular retinol and alters the metabolism of retinoic acid in cultured human keratinocytes and melanocytes. Melanoma Res 9(4):339–346CrossRefGoogle Scholar
  42. 42.
    Guillou H, Zadravec D, Martin PGP, Jacobsson A (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res 49(2):186–199PubMedCrossRefGoogle Scholar
  43. 43.
    Petrulis JR, Perdew GH (2001) Monitoring nuclear import with GFP-variant fusion proteins in digitonin-permeabilized cells. Biotechniques 31:772–775PubMedGoogle Scholar
  44. 44.
    Randolph RK, Simon M (1998) Dermal fibroblasts actively metabolize retinoic acid but not retinol. J Invest Dermatol 111(3):478–484PubMedCrossRefGoogle Scholar
  45. 45.
    Lee J-S, Kim M-R, Kim N-S, Kim YS, Yang J-M, Cho AY, Lee Y, Kim CD, Lee J-H (2010) Expression profiling of calcium induced genes in cultured human keratinocytes. J Korean Med Sci 25(4):619–625PubMedCrossRefGoogle Scholar
  46. 46.
    Torma H, Stenstrom E, Andersson E, Vahlguist A (1991) Synthetic retinoids affect differently the epidermal synthesis of 3,4-didehydroretinol. Skin Pharmacol 4(4):246–253PubMedCrossRefGoogle Scholar
  47. 47.
    Tang G, Webb AR, Russell RM, Holick MF (1994) Epidermis and serum protect retinol but not retinyl esters from sunlight-induced photodegradation. Photodermatol Photoimmunol Photomed 10(1):1–7PubMedGoogle Scholar
  48. 48.
    Sorg O, Tran C, Carraux P, Didierjean L, Saurat J (1999) Retinol and retinyl ester epidermal pools are not identically sensitive to UVB irradiation and antioxidant protective effect. Dermatology 199(4):302–307PubMedCrossRefGoogle Scholar
  49. 49.
    Mata NL, Moghrabi WN, Lee JS, Bui TV, Radu RA, Horwitz J, Travis GH (2004) Rpe65 is a retinyl ester binding protein that presents insoluble substrate to the isomerase in retinal pigment epithelial cells. J Biol Chem 279(1):635–643PubMedCrossRefGoogle Scholar
  50. 50.
    Hinterhuber G, Cauza K, Brugger K et al (2004) RPE65 of retinal pigment epithelium, a putative receptor molecule for plasma retinol-binding protein, is expressed in human keratinocytes. J Invest Dermatol 122(2):406–413PubMedCrossRefGoogle Scholar
  51. 51.
    Hix LM, Lockwood SF, Bertram JS (2004) Bioactive carotenoids: potent antioxidants and regulators of gene expression. Redox Rep 9(4):181–191PubMedCrossRefGoogle Scholar
  52. 52.
    Masaki H, Izutsu Y, Yahagi S, Okano Y (2009) Reactive oxygen species in HaCaT keratinocytes after UVB irradiation are triggered by intracellular Ca(2+) levels. J Investig Dermatol Symp Proc 14(1):50–52PubMedCrossRefGoogle Scholar
  53. 53.
    Hakozaki T, Date A, Yoshii T et al (2008) Visualization and characterization of UVB induced reactive oxygen species in a human skin equivalent model. Arch Dermatol Res 300(Suppl 1):S51–S56PubMedCrossRefGoogle Scholar
  54. 54.
    Mayer B, Oberbauer R (2003) Mitochondrial regulation of apoptosis. News Physiol Sci 18:89–94PubMedGoogle Scholar
  55. 55.
    Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB (1999) Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science 6(285):898–900CrossRefGoogle Scholar
  56. 56.
    Ahlemeyer B, Bauerbach E, Plath M, Steuber M, Heers C, Tegtmeier F, Krieglstein J (2001) Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic Biol Med 30(10):1067–1077PubMedCrossRefGoogle Scholar
  57. 57.
    Beak SM, Lee YS, Kim J-A (2004) NADPH oxidase and cyclooxygenase mediate the ultraviolet B-induced generation of reactive oxygen species and activation of nuclear factor-κB in HaCaT human keratinocytes. Biochimie 86(7):425–429PubMedCrossRefGoogle Scholar
  58. 58.
    Wang H, Kochevar IE (2005) Involvement of UVB-induced reactive oxygen species in TGF-h biosynthesis and activation in keratinocytes. Free Radic Biol Med 38(7):890–897PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Juliana I. Tafrova
    • 1
  • Adriana Pinkas-Sarafova
    • 1
  • Erik Stolarzewicz
    • 2
  • Kathlyn A. Parker
    • 2
  • Marcia Simon
    • 1
  1. 1.Living Skin Bank, Department of Oral Biology and Pathology, School of Dental MedicineStony Brook UniversityStony BrookUSA
  2. 2.Department of ChemistryStony Brook UniversityStony BrookUSA

Personalised recommendations