Advertisement

Molecular and Cellular Biochemistry

, Volume 363, Issue 1–2, pp 109–118 | Cite as

β-Hexosaminidase over-expression affects lysosomal glycohydrolases expression and glycosphingolipid metabolism in mammalian cells

  • Brunella Tancini
  • Alessandro Magini
  • Barbara Bortot
  • Alice Polchi
  • Lorena Urbanelli
  • Sandro Sonnino
  • Giovanni Maria Severini
  • Carla Emiliani
Article

Abstract

Lysosomes are not only degrading organelles but also involved in other critical cellular processes. In addition, active lysosomal glycohydrolases have been detected in an extra-lysosomal compartment: the presence of glycohydrolases on the plasma membrane (PM) has been widely demonstrated, and a possible role on the modification of the cell surface glycosphingolipids (GSL) participating in the modulation of cell functions such as cell-to-cell interactions and signal transduction pathways has been proposed. On this basis, the coordinated expression of lysosomal glycohydrolases and their translocation to the PM appear to be crucial for many cellular events. In this paper, we report evidence for the existence of a coordinated mechanism regulating the expression/activity of both lysosomal and PM-associated glycohydrolases. We show that the over-expression of the acidic glycohydrolase β-hexosaminidase α-subunit in mouse NIH/3T3 fibroblasts induces the increased expression of the Hex β-subunit necessary to form the active isoenzyme dimers as well as of other glycohydrolases participating in the GSL catabolism, such as β-galactosidase and β-glucocerebrosidase. More interestingly, this regulatory effect was also extended to the PM-associated hydrolases. In addition, transfected cells displayed a rearrangement of the GSL expression pattern that cannot be simply explained by the increased activity of a single enzyme. These observations clearly indicate that the expression level of metabolically related glycohydrolases is regulated in a coordinated manner and this regulation mechanism also involves the PM-associated isoforms.

Keywords

Fibroblasts Glycohydrolases Glycosphingolipid metabolism β-Hexosaminidase over-expression Lysosomes PM-associated hydrolases 

Abbreviations

β-Gal

β-Galactosidase

β-Gluc

β-Glucocerebrosidase

α-Gluc

α-Glucosidase

GSL

Glycosphingolipids

Hex

β-Hexosaminidase

HPTLC

High-performance thin layer chromatography

α-Man

α-Mannosidase

MUG

4-Methylumbelliferyl-β-N-acetylglucosaminide

MUGS

4-Methylumbelliferyl-β-N-acetylglucosaminide-6-sulfate

PM

Plasma membrane

SA

Specific activity

Notes

Acknowledgments

This work was supported by grants from: Fondazione Cassa di Risparmio di Perugia [2010.011.0434]; Azzurra, Associazione Malattie Rare O.N.L.U.S. to G.M.S and COFIN-PRIN 2010–2012 to S.S.

References

  1. 1.
    Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477PubMedGoogle Scholar
  2. 2.
    Sorkin A, Goh LK (2008) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 314:3093–3106PubMedCrossRefGoogle Scholar
  3. 3.
    Marchese A, Paing MM, Temple BR, Trejo J (2008) G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol 48:601–629PubMedCrossRefGoogle Scholar
  4. 4.
    Basha G, Lizée G, Reinicke AT, Seipp RP, Omilusik KD, Jefferies WA (2008) MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells. PLoS ONE 3:e3247PubMedCrossRefGoogle Scholar
  5. 5.
    Bendiske J, Bahr BA (2003) Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis an approach for slowing Alzheimer disease? J Neuropathol Exp Neurol 62:451–463PubMedGoogle Scholar
  6. 6.
    Emiliani C, Urbanelli L, Racanicchi L, Orlacchio A, Pelicci G, Sorbi S, Bernardi G, Orlacchio A (2003) Up-regulation of glycohydrolases in Alzheimer’s disease fibroblasts correlates with Ras activation. J Biol Chem 278:38453–38460PubMedCrossRefGoogle Scholar
  7. 7.
    Tancini B, Emiliani C, Mencarelli S, Cavalieri C, Stirling JL, Orlacchio A (2000) Evidence for the regulation of beta-N-acetylhexosaminidase expression during pregnancy in the rat. Biochim Biophys Acta 1475:184–190PubMedCrossRefGoogle Scholar
  8. 8.
    Pasini ME, Cattaneo F, Pinto MR, De Santis R, Perotti ME (1999) Plasma membrane association and preliminary characterization of Drosophila sperm surface glycosidases. Mol Reprod Dev 52:166–173PubMedCrossRefGoogle Scholar
  9. 9.
    Cordero OJ, Merino A, de la Páez Cadena M, Bugía B, Nogueira M, Viñuela JE, Martínez-Zorzano VS, de Carlos A, Rodríguez-Berrocal FJ (2001) Cell surface human alpha-l-fucosidase. Eur J Biochem 268:3321–3331PubMedCrossRefGoogle Scholar
  10. 10.
    Lukong KE, Seyrantepe V, Landry K, Trudel S, Ahmad A, Gahl WA, Lefrancois S, Morales CR, Pshezhetsky AV (2001) Intracellular distribution of lysosomal sialidase is controlled by the internalization signal in its cytoplasmic tail. J Biol Chem 276:46172–46181PubMedCrossRefGoogle Scholar
  11. 11.
    Mencarelli S, Cavalieri C, Magini A, Tancini B, Basso L, Lemansky P, Hasilik A, Li YT, Chigorno V, Orlacchio A, Emiliani C, Sonnino S (2005) Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579:5501–5506PubMedCrossRefGoogle Scholar
  12. 12.
    Cattaneo F, Pasini ME, Intra J, Matsumoto M, Briani F, Hoshi M, Perotti ME (2006) Identification and expression analysis of Drosophila melanogaster genes encoding beta-hexosaminidases of the sperm plasma membrane. Glycobiology 16(9):786–800PubMedCrossRefGoogle Scholar
  13. 13.
    Aureli M, Masilamani AP, Illuzzi G, Loberto N, Scandroglio F, Prinetti A, Chigorno V, Sonnino S (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583:2469–2473PubMedCrossRefGoogle Scholar
  14. 14.
    Regina Todeschini A, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433PubMedCrossRefGoogle Scholar
  15. 15.
    Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 19:549–557PubMedCrossRefGoogle Scholar
  16. 16.
    Sonnino S, Aureli M, Loberto N, Chigorno V, Prinetti A (2010) Fine tuning of cell functions through remodeling of glycosphingolipids by plasma membrane-associated glycohydrolases. FEBS Lett 584:1914–1922PubMedCrossRefGoogle Scholar
  17. 17.
    Mahuran DJ (1999) Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim Biophys Acta 1455:105–138PubMedGoogle Scholar
  18. 18.
    Mahuran DJ (1990) Characterization of human placental beta-hexosaminidase I2. Proteolytic processing intermediates of hexosaminidase A. J Biol Chem 265:6794–6799PubMedGoogle Scholar
  19. 19.
    Emiliani C, Orlacchio A (1992) Particular forms of beta-N-acetylhexosaminidase in human leukaemic cells. Int J Biochem 24:539–544PubMedCrossRefGoogle Scholar
  20. 20.
    Woynarowska B, Wikiel H, Bernacki RJ (1989) Human ovarian carcinoma beta-N-acetylglucosaminidase isoenzymes and their role in extracellular matrix degradation. Cancer Res 49:5598–5604PubMedGoogle Scholar
  21. 21.
    Ciferri S, Emiliani C, Guglielmini G, Orlacchio A, Nenci GG, Gresele P (2000) Platelets release their lysosomal content in vivo in humans upon activation. Thromb Haemost 83:157–164PubMedGoogle Scholar
  22. 22.
    Cattaneo F, Ogiso M, Hoshi M, Perotti ME, Pasini ME (2002) Purification and characterization of the plasma membrane glycosidases of Drosophila melanogaster spermatozoa. Insect Bioch Mol Biol 32:929–941CrossRefGoogle Scholar
  23. 23.
    Massaccesi L, Lombardo A, Venerando B, Tettamanti G, Goi G (2007) Isoenzyme pattern and partial characterization of hexosaminidases in the membrane and cytosol of human erythrocytes. Clin Biochem 40:467–477PubMedCrossRefGoogle Scholar
  24. 24.
    Orlacchio A, Martino S, Sarchielli P, Gallai V, Emiliani C (1998) Beta-N-acetylhexosaminidase in peripheral blood lymphocytes and monocytes in the different forms and stages of multiple sclerosis. J Neurochem 71:1168–1176PubMedCrossRefGoogle Scholar
  25. 25.
    Emiliani C, Martino S, Stirling JL, Orlacchio A (1995) Influence of cell differentiation and protein kinase C activation on sub-cellular distribution of beta-N-acetylhexosaminidases of HL 60 cells. Physiol Chem Phys Med NMR 27:369–376PubMedGoogle Scholar
  26. 26.
    Sorice M, Longo A, Garofalo T, Mattei V, Misasi R, Pavan A (2004) Role of GM3-enriched microdomains in signal transduction regulation in T lymphocytes. Glycoconj J 20:63–70PubMedCrossRefGoogle Scholar
  27. 27.
    Carter HE, Hendry RA, Nojima S, Stanacev NZ, Ohno K (1961) Biochemistry of the sphingolipids. XIII. Determination of the structure of cerebrosides from wheat flour. J Biol Chem 236:1912–1916PubMedGoogle Scholar
  28. 28.
    Toyokuni T, Nisar M, Dean B, Hakomori S (1991) A facile and regiospecific tritiation of sphingosine: synthesis of (2S, 3R, 4E)-2-amino-4-octadecene-1, 3-diol-1-3H. J Label Comp Radiopharm 29:567–574CrossRefGoogle Scholar
  29. 29.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  30. 30.
    Tancini B, Magini A, Latterini L, Urbanelli L, Ciccarone V, Elisei F, Emiliani C (2010) Occurrence of an anomalous endocytic compartment in fibroblasts from Sandhoff disease patients. Mol Cell Biochem 335:273–282PubMedCrossRefGoogle Scholar
  31. 31.
    Cachón-González MB, Wang SZ, Lynch A, Ziegler R, Cheng SH, Cox TM (2006) Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci USA 103:10373–10378PubMedCrossRefGoogle Scholar
  32. 32.
    Martino S, Marconi P, Tancini B, Dolcetta D, De Angelis MG, Montanucci P, Bregola G, Sandhoff K, Bordignon C, Emiliani C, Manservigi R, Orlacchio A (2005) A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Hum Mol Genet 14:2113–2123PubMedCrossRefGoogle Scholar
  33. 33.
    Emiliani C, Beccari T, Tabilio A, Orlacchio A, Hosseini R, Stirling JL (1990) An enzyme with properties similar to those of beta-N-acetylhexosaminidase S is expressed in the promyelocytic cell line HL-60. Biochem J 267:111–117PubMedGoogle Scholar
  34. 34.
    Emiliani C, Locci P, Marinucci L, Rossi R, Orlacchio A (1992) Pregnancy modulates the expression of beta-N-acetylhexosaminidase in rat serum and tissues. Int J Biochem 24:1599–1605PubMedCrossRefGoogle Scholar
  35. 35.
    Arfi A, Bourgoin C, Basso L, Emiliani C, Tancini B, Chigorno V, Li YT, Orlacchio A, Poenaru L, Sonnino S, Caillaud C (2005) Bicistronic lentiviral vector corrects B-hexosaminidase deficiency in transduced and cross-corrected human Sandhoff fibroblasts. Neurobiol Dis 20:583–593PubMedCrossRefGoogle Scholar
  36. 36.
    Orlacchio A, Emiliani C, Di Renzo GC, Cosmi EV (1986) beta-N-acetyl-d-glucosaminidase isoenzymes from human amnionic membranes. Clin Chim Acta 159:279–289PubMedCrossRefGoogle Scholar
  37. 37.
    Yogeeswaran G, Sheinin R, Wherrett JR, Murray RK (1972) Studies on the glycosphingolipids of normal and virally transformed 3T3 mouse fibroblasts. J Biol Chem 247:5146–5148PubMedGoogle Scholar
  38. 38.
    Magini A, Mencarelli S, Tancini B, Ciccarone V, Urbanelli L, Hasilik A, Emiliani C (2008) Identification and characterization of mature beta-hexosaminidases associated with human placenta lysosomal membrane. Biosci Rep 28:229–237PubMedGoogle Scholar
  39. 39.
    Magini A, Polchi A, Tancini B, Urbanelli L, Hasilik A, Emiliani C (2011) Glycohydrolases β-hexosaminidase and β-galactosidase are associated with lipid microdomains of Jurkat T-lymphocytes. Biochimie. doi: 10.1016/j.biochi.2011.09.021
  40. 40.
    Valaperta R, Chigorno V, Basso L, Prinetti A, Bresciani R, Preti A, Miyagi T, Sonnino S (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20:1227–1229PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Brunella Tancini
    • 1
  • Alessandro Magini
    • 1
  • Barbara Bortot
    • 2
  • Alice Polchi
    • 1
  • Lorena Urbanelli
    • 1
  • Sandro Sonnino
    • 3
  • Giovanni Maria Severini
    • 2
  • Carla Emiliani
    • 1
    • 4
  1. 1.Department of Experimental Medicine and Biochemical SciencesUniversity of PerugiaPerugiaItaly
  2. 2.Molecular Medicine DepartmentInstitute for Maternal and Child Health, IRCCS Burlo GarofoloTriesteItaly
  3. 3.Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence for Neurodegenerative DiseasesUniversity of MilanoMilanoItaly
  4. 4.Center of Excellence on Innovative Nanostructured Materials (CEMIN)University of PerugiaPerugiaItaly

Personalised recommendations