Molecular and Cellular Biochemistry

, Volume 362, Issue 1–2, pp 225–232 | Cite as

Creatine and pyruvate prevent behavioral and oxidative stress alterations caused by hypertryptophanemia in rats

  • Vivian Strassburger Andrade
  • Denise Bertin Rojas
  • Lenise Oliveira
  • Mychely Lopes Nunes
  • Fernanda Luz de Castro
  • Cristina Garcia
  • Tanise Gemelli
  • Rodrigo Binkowski de Andrade
  • Clóvis Milton Duval Wannmacher


It is known that the accumulation of tryptophan and its metabolites is related to brain damage associated with both hypertryptophanemia and neurodegenerative diseases. In this study, we investigated the effect of tryptophan administration on various parameters of behavior in the open-field task and oxidative stress, and the effects of creatine and pyruvate, on the effect of tryptophan. Forty, 60-day-old male Wistar rats, were randomly divided into four groups: saline, tryptophan, pyruvate + creatine, tryptophan + pyruvate + creatine. Animals received three subcutaneous injections of tryptophan (2 μmol/g body weight each one at 3 h of intervals) and/or pyruvate (200 μg/g body weight 1 h before tryptophan), and/or creatine (400 μg/g body weight twice a day for 5 days before tryptophan twice a day for 5 days before training); controls received saline solution (NaCl 0.85%) at the same volumes (30 μl/g body weight) than the other substances. Results showed that tryptophan increased the activity of the animals, suggesting a reduction in the ability of habituation to the environment. Tryptophan induced increase of TBA-RS and total sulfhydryls. The effects of tryptophan in the open field, and in oxidative stress were fully prevented by the combination of creatine plus pyruvate. In case these findings also occur in humans affected by hypertryptophanemia or other neurodegenerative disease in which tryptophan accumulates, it is feasible that oxidative stress may be involved in the mechanisms leading to the brain injury, suggesting that creatine and pyruvate supplementation could benefit patients affected by these disorders.


Tryptophan Creatine Pyruvate Open field Oxidative stress 



The authors are grateful for the financial support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and FINEP Rede Instituto Brasileiro de Neurociência (IBN-Net).


  1. 1.
    Levy HL (2001) Hartnup disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited diseases, 8th edn. McGraw-Hill, New York, pp 1667–1724Google Scholar
  2. 2.
    Okuda S, Nishiyama N, Saito H, Katsuki H (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci USA 93:12553–12558PubMedCrossRefGoogle Scholar
  3. 3.
    Heyes MP (1996) The kynurenine pathway and neurological disease. Therapeutic strategies. Adv Exp Med Biol 398:125–129PubMedCrossRefGoogle Scholar
  4. 4.
    Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Progr Neurobiol 64:185–218CrossRefGoogle Scholar
  5. 5.
    Sardar AM, Bell JE, Reynolds GP (1995) Increased concentrations of the neurotoxin 3-hydroxykynurenine in the frontal cortex of HIV-1-positive patients. J Neurochem 64:932–935PubMedCrossRefGoogle Scholar
  6. 6.
    Pearson SJ, Reynolds GP (1991) Determination of 3-hydroxykynurenine in human brain and plasma by high-performance liquid chromatography with electrochemical detection. Increased concentrations in hepatic encephalopathy. J Chromatogr 565:436–440PubMedCrossRefGoogle Scholar
  7. 7.
    Cornelio AR, Rodrigues-Junior Vda S, Rech VC, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2006) Inhibition of creatine kinase activity from rat cerebral cortex by 3-hydroxykynurenine. Brain Res 1124(1):188–196PubMedCrossRefGoogle Scholar
  8. 8.
    Guillemin GJ, Brew BJ (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep 7:1–8CrossRefGoogle Scholar
  9. 9.
    Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D (1999) Degradation of tryptophan in neurodegenerative disorders. Adv Exp Med Biol 467:133–138PubMedCrossRefGoogle Scholar
  10. 10.
    Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D (2000) Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm 107:343–353PubMedCrossRefGoogle Scholar
  11. 11.
    Baran H, Jellinger K, Deecke L (1999) Kynurenine metabolism in Alzheimer’s disease. J Neural Transm 106:165–181PubMedCrossRefGoogle Scholar
  12. 12.
    Heyes MP, Saito K, Crowley JS (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and noninflammatory neurological disease. Brain 115:1249–1273PubMedCrossRefGoogle Scholar
  13. 13.
    Pearson SJ, Reynolds GP (1992) Increased brain concentration of a neurotoxin, 3-hydroxykynurenine, in Huntington’s disease. Neurosci Lett 144:199–201PubMedCrossRefGoogle Scholar
  14. 14.
    Guidetti P, Reddy H, Tagle DA, Schwarcz R (2000) Early kynurenergic impairment in Huntington’s disease and in a transgenic animal model. Neurosci Lett 282:233–235CrossRefGoogle Scholar
  15. 15.
    Maurizi CP (1990) The therapeutic potential for tryptophan and melatonin: possible roles in depression, sleep, Alzheimer’s disease and abnormal aging. Med Hypotheses 31:233–242PubMedCrossRefGoogle Scholar
  16. 16.
    Widner B, Ledochowski M, Fuchs D (2000) Sleep disturbances and tryptophan in patients with Alzheimer’s disease. Lancet 355:755–756PubMedCrossRefGoogle Scholar
  17. 17.
    Porter RJ, Lunn BS, Walker LL, Gray JM, Ballard CG, O’Brien JT (2000) Cognitive deficit induced by acute tryptophan depletion in patients with Alzheimer’s disease. Am J Psychiatry 157:38–640CrossRefGoogle Scholar
  18. 18.
    Snedden W, Mellor CS, Martin JR (1983) Familial hypertryptophanemia, tryptophanuria and indolketonuria. Clin Chim Acta 131:247–256PubMedCrossRefGoogle Scholar
  19. 19.
    Tada K, Ito H, Wada Y, Arakawa T (1963) Congenital tryptophanuria with dwarfism (“H” disease-like clinical features without indicanuria and generalized aminoaciduria): a probably new inborn error of tryptophan metabolism. Tohoku J Exp Med 80:118–134PubMedCrossRefGoogle Scholar
  20. 20.
    Martin IR, Mellor CS, Fraser FC (1995) Familial hypertryptophanemia in two siblings. Clin Gen 47:180–183CrossRefGoogle Scholar
  21. 21.
    Feksa LR, Cornelio A, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2005) The effects of the interactions between amino acids on pyruvate kinase activity from the brain cortex of young rats. Int J Dev Neurosci 23(6):509–514PubMedCrossRefGoogle Scholar
  22. 22.
    Cornelio AR, Rodrigues V Jr, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2004) Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Dev Neurosci 22(2):95–101PubMedCrossRefGoogle Scholar
  23. 23.
    Feksa LR, Latini A, Rech VC, Feksa PB, Koch GD, Amaral MF, Leipnitz G, Dutra-Filho CS, Wajner M, Wannmacher CM (2008) Tryptophan administration induces oxidative stress in brain cortex of rats. Metab Brain Dis 23(2):221–233PubMedCrossRefGoogle Scholar
  24. 24.
    Tomimoto H, Yamamoto K, Homburger HA, Yanagihara T (1993) Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme after cerebral ischemia in gerbils. Acta Neuropathol 86:447–455PubMedGoogle Scholar
  25. 25.
    David SS, Shoemaker M, Haley BE (1998) Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabelling with aberrant cytosol-membrane partitioning. Mol Brain Res 54:276–287PubMedCrossRefGoogle Scholar
  26. 26.
    Aksenov M, Aksenova M, Butterfield AD, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 74:2520–2527PubMedCrossRefGoogle Scholar
  27. 27.
    Gualano B, Artioli GG, Poortmans JR, Lancha AH (2010) Exploring the therapeutic role of creatine supplementation. Amino Acids 38:31–44PubMedCrossRefGoogle Scholar
  28. 28.
    Guimbal C, Kilimann MW (1993) A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney CDNA cloning and functional expression. J Biol Chem 268:8418–8421PubMedGoogle Scholar
  29. 29.
    Schloss P, Mayser W, Betz H (1994) The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Commun 198:637–645PubMedCrossRefGoogle Scholar
  30. 30.
    Happe HK, Murrin LC (1995) In situ hybridization analysis of CHOT1, a creatine transporter, in the rat central nervous system. J Comp Neurol 351:94–103PubMedCrossRefGoogle Scholar
  31. 31.
    Hemmer W, Wallimann T (1993) Functional aspects of creatine kinase in brain. Dev Neurosci 15:249–260PubMedCrossRefGoogle Scholar
  32. 32.
    Saltarelli MD, Bauman AL, Moore KR, Bradley CC, Blakely RD (1996) Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci 18:524–534PubMedCrossRefGoogle Scholar
  33. 33.
    Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213PubMedGoogle Scholar
  34. 34.
    Hemmer W, Zanolla E, Furter-Graves EM, Eppenberger HM, Wallimann T (1994) Creatine kinase isoenzymes in chicken cerebellum: specific localization of brain-type creatine kinase in Bergmann glial cells and muscle-type creatine kinase in Purkinje neurons. Eur J Neurosci 6:538–549PubMedCrossRefGoogle Scholar
  35. 35.
    Beal MF, Palomo T, Kostrzewa RM, Archer T (2000) Neuroprotective and neurorestorative strategies for neuronal injury. Neurotoxic Res 2(2–3):71–84CrossRefGoogle Scholar
  36. 36.
    Chaturvedi RK, Beal MF (2008) Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci 1147:395–412 ReviewPubMedCrossRefGoogle Scholar
  37. 37.
    Brand K (1997) Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr 29:355–364PubMedCrossRefGoogle Scholar
  38. 38.
    Brand KA, Hermfisse U (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11:388–395PubMedGoogle Scholar
  39. 39.
    Andrae U, Singh J, Ziegler-Skylakakis K (1985) Pyruvate and related a-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol Lett 28:93–98PubMedCrossRefGoogle Scholar
  40. 40.
    Clement MV, Ponton A, Pervaiz S (1998) Apoptosis induced by hydrogen peroxide is mediated by decreased superoxide anion concentration and reduction of intracellular milieu. FEBS Lett 440:13–18PubMedCrossRefGoogle Scholar
  41. 41.
    Kitamura Y, Ota T, Matsuoka Y, Tooyama I, Kimura H, Shimohama S, Normura Y, Gebicke-Haerter PJ, Taniguchi T (1999) Hydrogen peroxide induced apoptosis mediated by p53 protein in glial cells. Glia 25:154–164PubMedCrossRefGoogle Scholar
  42. 42.
    Palomba L, Sestili P, Columbaro M, Falcieri E, Cantoni O (1999) Apoptosis and necrosis following exposure of U937 cells to increasing concentrations of hydrogen peroxide: the effect of the poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide. Biochem Pharmacol 58:1743–1750PubMedCrossRefGoogle Scholar
  43. 43.
    Mazzio EA, Soliman KF (2003) Cytoprotection of pyruvic acid and reduced beta-nicotinamide adenine dinucleotide against hydrogen peroxide toxicity in neuroblastoma cells. Neurochem Res 28(5):733–741PubMedCrossRefGoogle Scholar
  44. 44.
    Reznick AZ, Witt EH, Silbermann M, Packer L (1993) The threshold of age in exercise and antioxidants action. EXS 62:423–427 ReviewGoogle Scholar
  45. 45.
    Méndez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Martín ME, Labandeira-Garcia JL (2001) Effect of iron and manganese on hydroxyl radical production by 6-hydroxydopamine: mediation of antioxidants. Free Radic Biol Med 31(8):986–998PubMedCrossRefGoogle Scholar
  46. 46.
    Karelson E, Bogdanovic N, Garlind A, Winbland B, Zilmer K, Kullisaar T, Vihalemm T, Kairane C, Zilmer M (2001) The cerebrocortical areas in normal brain aging and in Alzheimer’s disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 26(4):353–361PubMedCrossRefGoogle Scholar
  47. 47.
    Feksa LR, Cornelio A, Vargas CR, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Alanine prevents the inhibition of pyruvate kinase activity caused by tryptophan in cerebral cortex of rats. Met Brain Dis 18(2):129–137CrossRefGoogle Scholar
  48. 48.
    Ryu JK, Choi HB, Mclarnon JB (2006) Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington’s disease. Neuroscience 141:1835–1848PubMedCrossRefGoogle Scholar
  49. 49.
    Stöckler S, Holzbach U, Hanenfeld F, Marquardt I, Helms G, Requart M, Hänicke W, Frahm J (1994) Creatine deficiency in the brain: a new, treatable Inborn Error of Metabolism. Pediatr Res 36:409–413PubMedCrossRefGoogle Scholar
  50. 50.
    Eilam David (2002) Open-Field behavior withstands drastics changes in arena size. Behav Brain Res 142:53–62CrossRefGoogle Scholar
  51. 51.
    Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504PubMedCrossRefGoogle Scholar
  52. 52.
    Archer J (1973) The influence of testosterone on chick behavior in novel environments. Behav Biol 8(1):93–108PubMedCrossRefGoogle Scholar
  53. 53.
    Elias JW, Bell RW (1975) Open fields interpretation: social status and social vs. spatial stimulation as factors. J Gen Psychol 92(2d Half):293–294PubMedCrossRefGoogle Scholar
  54. 54.
    Llesuy SF, Milei J, Molina H, Boveris A, Milei S (1985) Comparisons of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori 71:241–249PubMedGoogle Scholar
  55. 55.
    González-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver and muscle. Free Radical Biol Med 10:93–100CrossRefGoogle Scholar
  56. 56.
    Kehrer JP (2000) Cause-effect of oxidative stress and apoptosis. Teratology 62(4):235–236 ReviewPubMedCrossRefGoogle Scholar
  57. 57.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358PubMedCrossRefGoogle Scholar
  58. 58.
    Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103(2):373–383PubMedCrossRefGoogle Scholar
  59. 59.
    Denenberg VH (1969) Open-field behavior in the rat: what does it mean? Ann N Y Acad Sci 159(3):852–859PubMedCrossRefGoogle Scholar
  60. 60.
    Halliwell B, Gutteridge JMC (1996) Oxygen radicals and nervous system. Trends Neurosci 8:22–26CrossRefGoogle Scholar
  61. 61.
    Halliwell B, Gutteridge JMC (eds) (1999) Free radical in biological and medicine. Oxford University Press, Oxford, pp 188–276Google Scholar
  62. 62.
    Maus M, Marin P, Israël M, Glowinski J, Prémont J (1999) Pyruvate and lactate protect striatal neurons against n-methyl-d-aspartate-induced neurotoxicity. Eur J Neurosci 11(9):3215–3224PubMedCrossRefGoogle Scholar
  63. 63.
    Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290(1):47–52PubMedCrossRefGoogle Scholar
  64. 64.
    Hahn KA, Salomons GS, Tackels-Horne D, Wood TC, Taylor HA, Schroer RJ, Lubs HA, Jakobs C, Olson RL, Holden KR, Stevenson RE, Schwartz CE (2002) X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28Am. J Hum Genet 70(5):1349–1356CrossRefGoogle Scholar
  65. 65.
    Nasrallah F, Feki M, Kaabachi N (2010) Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol 42(3):163–171 ReviewPubMedCrossRefGoogle Scholar
  66. 66.
    Forrest CM, Mackay GM, Stoy N, Egerton M, Christofides J, Stone TW, Darlington LG (2004) Tryptophan loading induces oxidative stress. Free Radical Res 38:1167–1171CrossRefGoogle Scholar
  67. 67.
    Feksa LR, Latini A, Rech VC, Wajner M, Dutra-Filho CS, de Souza Wyse AT, Wannmacher CM (2006) Promotion of oxidative stress by L-tryptophan in cerebral cortex of rats. Neurochem Int 49(1):87–93PubMedCrossRefGoogle Scholar
  68. 68.
    Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illness? Ann Neurol 31:119–130PubMedCrossRefGoogle Scholar
  69. 69.
    Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16:125–131PubMedCrossRefGoogle Scholar
  70. 70.
    Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366PubMedCrossRefGoogle Scholar
  71. 71.
    Hodgkins PS, Schwarcz R (1998) Interference with cellular energy metabolism reduces kynurenic acid formation in rat brain slices: reversal by lactate and pyruvate. Eur J Neurosci 10:1986–1994PubMedCrossRefGoogle Scholar
  72. 72.
    Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695PubMedCrossRefGoogle Scholar
  73. 73.
    Nakagami Y, Saito H, Katsuki H (1996) 3-Hydroxykynurenine toxicity on the rat striatum in vivo. Jpn J Pharmacol 71:183–186PubMedCrossRefGoogle Scholar
  74. 74.
    Dzeja PP, Redfield MM, Burnett JC, Terzic A (2000) Failing energetics in failing hearts. Curr Cardiol Rep 2:212–217PubMedCrossRefGoogle Scholar
  75. 75.
    Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Dauok R, Beal MF (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci 18:156–163PubMedGoogle Scholar
  76. 76.
    Strong MJ, Pattee GL (2000) Creatine and coenzyme Q10 in the treatment of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 1:17–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Vivian Strassburger Andrade
    • 1
  • Denise Bertin Rojas
    • 1
  • Lenise Oliveira
    • 1
  • Mychely Lopes Nunes
    • 1
  • Fernanda Luz de Castro
    • 1
  • Cristina Garcia
    • 1
  • Tanise Gemelli
    • 1
  • Rodrigo Binkowski de Andrade
    • 1
  • Clóvis Milton Duval Wannmacher
    • 1
  1. 1.Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations