Advertisement

Molecular and Cellular Biochemistry

, Volume 360, Issue 1–2, pp 71–77 | Cite as

Simvastatin protects osteoblast against H2O2-induced oxidative damage via inhibiting the upregulation of Nox4

  • Wei Huang
  • Wei-lin Shang
  • De-hao Li
  • Wen-wen Wu
  • Shu-xun Hou
Article

Abstract

Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, have been used clinically as a cholesterol-lowering drug to treat hyperlipidemia. In recent years, accumulating evidence indicates the possible beneficial effect of statins on osteoporosis. However, the underlying molecular mechanism remains to be elucidated. In the present study, we investigated the therapeutic effects of simvastatin on cell viability, apoptosis, and alkaline phosphatase activity in murine osteoblastic MC3T3-E1 cells treated by hydrogen peroxide (H2O2, 100 μM). It was shown that simvastatin suppressed H2O2-induced oxidative stress and attenuated H2O2-induced cell injury including increasing osteoblastic viability, inhibiting apoptosis, and promoting differentiation. Then, we examined the effects of simvastatin (10−7 M) on Nox1, Nox2, and Nox4 expressions in osteoblastic cells treated by H2O2 (100 μM). We found that in MC3T3-E1 cells, H2O2-induced upregulation of Nox4 expression was inhibited by simvastatin, which was restored by farnesyl pyrophosphate (5 μM) as well as geranylgeranyl pyrophosphate (5 μM). RNAi approach was used to reduce Nox4 protein levels in osteoblastic cells to explore its biological effects against H2O2-induced oxidative damage. When Nox4 expression was reduced in osteoblastic cells, H2O2-induced cell injury was attenuated markedly. We concluded that simvastatin protected osteoblast against H2O2-induced oxidative damage, at least in part, via inhibiting the upregulation of Nox4.

Keywords

Simvastatin Hydrogen peroxide NADPH oxidase Nox4 

References

  1. 1.
    National Institutes of Health (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement Online 17:1–36Google Scholar
  2. 2.
    Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061PubMedCrossRefGoogle Scholar
  3. 3.
    Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018PubMedCrossRefGoogle Scholar
  4. 4.
    Theill L, Boyle W, Penninger J (2002) RANK-L and RANK: T cells, bone loss and mammalian evolution. Annu Rev Immunol 20:795–823PubMedCrossRefGoogle Scholar
  5. 5.
    Grcevic D, Katavic V, Lukic IK, Kovacic N, Lorenzo JA, Marusic A (2001) Cellular and molecular interactions between immune system and bone. Croat Med J 42:384–392PubMedGoogle Scholar
  6. 6.
    Lim LS, Hoeksema LJ, Sherin K (2009) Screening for osteoporosis in the adult US population: ACPM position statement on preventive practice. Am J Prev Med 36:366–375PubMedCrossRefGoogle Scholar
  7. 7.
    Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43:332–347PubMedCrossRefGoogle Scholar
  8. 8.
    Kakehi T, Yabe-Nishimura C (2008) NOX enzymes and diabetic complications. Semin Immunopathol 30:301–314PubMedCrossRefGoogle Scholar
  9. 9.
    Mandal CC, Ganapathy S, Gorin Y, Mahadev K, Block K, Abboud HE, Harris SE, Ghosh-Choudlury G, Ghosh-Choudhury N (2010) Reactive oxygen species derived from Nox4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem J 433(2):393–402CrossRefGoogle Scholar
  10. 10.
    Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, Bohm M, Nickenig G (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 22:300–305PubMedCrossRefGoogle Scholar
  11. 11.
    Whaley-Connell A, Habibi J, Nistala R, Cooper SA, Karuparthi PR, Hayden MR, Rehmer N, Demarco VG, Andresen BT, Wei Y, Ferrario C, Sowers JR (2008) Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment. Hypertension 51:474–480PubMedCrossRefGoogle Scholar
  12. 12.
    Zhou MS, Schuman IH, Jaimes EA, Raij L (2008) Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-β, and fibronectin with concomitant increase in nitric oxide bioavailability. Am J Physiol Renal Physiol 295:F53–F59PubMedCrossRefGoogle Scholar
  13. 13.
    Pasco JA, Kotowicz MA, Henry MJ, Sanders KM, Mnutr KS, Nicholson GC (2002) Statin use, bone mineral density, and facture risk: Geelong Osteoporosis Study. Arch Intern Med 162:537–540PubMedCrossRefGoogle Scholar
  14. 14.
    Edwards CJ, Hart DJ, Spector TD (2000) Oral statins and increased bone mineral density in postmenopausal women. Lancet 355:2218–2219PubMedCrossRefGoogle Scholar
  15. 15.
    Kanazawa I, Yamaguchi T, Yamauchi M, Sugimoto T (2009) Rosuvastatin increased serum osteocalcin levels independent of its serum cholesterol-lowering effect in patients with type 2 diabetes and hypercholesterolemia. Intern Med 48(21):1869–1873PubMedCrossRefGoogle Scholar
  16. 16.
    Monjo M, Rubert M, Ellingsen JE, Lyngstadaas SP (2010) Rosuvastatin promotes osteoblast differentiation and regulates SLCO1A1 transporter gene expression in MC3T3–E1 cells. Cell Physiol Biochem 26(4–5):647–656PubMedCrossRefGoogle Scholar
  17. 17.
    Ho ML, Chen YH, Liao HJ, Chen CH, Hung SH, Lee MJ, Fu YC, Wang YH, Wang GJ, Chang JK (2009) Simvastatin increases osteoblasts and osteogenic proteins in ovariectomized rats. Eur J Clin Invest 39(4):296–303PubMedCrossRefGoogle Scholar
  18. 18.
    Ohnakaa K, Shimodaa S, Nawatac H, Shimokawad H, Kaibuchie K, Yukihide Iwamotof Y, Takayanagi R (2001) Pitvastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun 287(2):337–342CrossRefGoogle Scholar
  19. 19.
    Wang X, Tokuda H, Hatakeyama D, Hirade K, Niwa M, Ito H, Kato K, Kozawa O (2003) Mechanism of simvastatin on induction of heat shock protein in osteoblasts. Arch Biochem Biophys 415(l):6–13PubMedCrossRefGoogle Scholar
  20. 20.
    Maeda T, Kawane T, Horiuchi N (2003) Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology 144(2):681–692PubMedCrossRefGoogle Scholar
  21. 21.
    Hwang R, Lee EJ, Kim MH, Li SZ, Jin YJ, Rhee Y, Kim YM, Lim SK (2004) Calcyclin, a Ca2+ ion binding protein, contributes to the anabolic effects of simvastatin on bone. J Biol Chem 279(20):21239–21247PubMedCrossRefGoogle Scholar
  22. 22.
    Yang YM, Huang WD, Xie QM, Xu ZR, Zhao QJ, Wu XM, Li FF, Dong XW (2010) Simvastatin attenuates TNF-α-induced growth inhibition and apoptosis in murine osteoblastic MC3T3–E1 cells. Inflamm Res 59(2):151–157CrossRefGoogle Scholar
  23. 23.
    Manfredini V, Biancini GB, Vanzin CS, Dal Vesco AM, Cipriani F, Biasi L, Treméa R, Deon M, Peralba Mdo C, Wajner M, Vargas CR (2010) Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic type 2 diabetic patients. Cell Biochem Funct 28(5):360–366PubMedCrossRefGoogle Scholar
  24. 24.
    Bloom HL, Shukrullah I, Veledar E, Gutmann R, London B, Dudley SC (2010) Statins decrease oxidative stress and ICD therapies. Cardiol Res Pract 2010:253803PubMedGoogle Scholar
  25. 25.
    Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46(11):1550–1555PubMedCrossRefGoogle Scholar
  26. 26.
    Manolagas SC (2008) De-fense! De-fense! De-fense: scavenging H2O2 while making cholesterol. Endocrinology 149(7):3264–3266PubMedCrossRefGoogle Scholar
  27. 27.
    Mody N, Parhami F, Saraflan TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519PubMedCrossRefGoogle Scholar
  28. 28.
    Polidori MC, Stahl W, Eichler O, Niestroj I, Sies H (2001) Profles of antioxidants in human plasma. Free Radic Biol Med 30:456–462PubMedCrossRefGoogle Scholar
  29. 29.
    Morton DJ, Barrett-Connor EL, Schneider DL (2001) Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 16:135–140PubMedCrossRefGoogle Scholar
  30. 30.
    Zhong ZM, Bai L, Chen JT (2009) Advanced oxidation protein products inhibit proliferation and differentiation of rat osteoblast-like cells via NF-kappaB pathway. Cell Physiol Biochem 24(1–2):105–114PubMedCrossRefGoogle Scholar
  31. 31.
    Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T (2009) Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol Dial Transpl 24(7):2051–2058CrossRefGoogle Scholar
  32. 32.
    Liberman M, Bassi E, Martinatti MK, Lario FC, Wosniak J Jr, Pomerantzeff PM, Laurindo FR (2008) Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol 28(3):463–470PubMedCrossRefGoogle Scholar
  33. 33.
    Salido M, Vilches-Perez JI, Gonzalez JL, Vilches J (2009) Mitochondrial bioenergetics and distribution in living human osteoblasts grown on implant surfaces. Histol Histopathol 24(10):1275–1286PubMedGoogle Scholar
  34. 34.
    Park YH, Han DW, Suh H, Ryu GH, Hyon SH, Cho BK, Park JC (2003) Protective effects of green tea polyphenol against reactive oxygen species-induced oxidative stress in cultured rat calvarial osteoblast. Cell Biol Toxicol 19(5):325–337PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Wei Huang
    • 1
  • Wei-lin Shang
    • 1
  • De-hao Li
    • 1
  • Wen-wen Wu
    • 1
  • Shu-xun Hou
    • 1
  1. 1.Department of Orthopaedics SurgeryThe First Affiliated Hospital of General Hospital of PLABeijingChina

Personalised recommendations