Skip to main content
Log in

Radicicol, an inhibitor of Hsp90, enhances TRAIL-induced apoptosis in human epithelial ovarian carcinoma cells by promoting activation of apoptosis-related proteins

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various cancer cells. Hsp90 is known to be involved in cell survival and growth in tumor cells. Nevertheless, Hsp90 inhibitors exhibit a variable effect on the cytotoxicity of anticancer drugs. Furthermore, the combined effect of Hsp90 inhibitors on TRAIL-induced apoptosis in epithelial ovarian cancer cells has not been determined. To assess the ability of an inhibitor of Hsp90 inhibitor radicicol to promote apoptosis, we investigated the effect of radicicol on TRAIL-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. TRAIL induced a decrease in Bid, Bcl-2, Bcl-xL, and survivin protein levels, increase in Bax levels, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1 and an increase in the tumor suppressor p53 levels. Radicicol enhanced TRAIL-induced apoptosis-related protein activation, nuclear damage and cell death. These results suggest that radicicol may potentiate the apoptotic effect of TRAIL on ovarian carcinoma cell lines by increasing the activation of the caspase-8- and Bid-dependent pathway and the mitochondria-mediated apoptotic pathway, leading to caspase activation. Radicicol may confer a benefit in the TRAIL treatment of epithelial ovarian adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu GS (2009) TRAIL as a target in anti-cancer therapy. Cancer Lett 285:1–5. doi:10.1016/j.canlet.2009.02.029

    Article  PubMed  CAS  Google Scholar 

  2. Mahmood Z, Shukla Y (2010) Death receptors: targets for cancer therapy. Exp Cell Res 316:887–899. doi:10.1016/j.excr.2009.12.011

    Article  PubMed  CAS  Google Scholar 

  3. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163

    Article  PubMed  CAS  Google Scholar 

  4. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176. doi:10.1093/annonc/mdg316

    Article  PubMed  CAS  Google Scholar 

  5. Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100:1523–1529. doi:10.1038/sj.bjc.6605066

    Article  PubMed  CAS  Google Scholar 

  6. Young JC, Agashe VR, Siegers K, Harti FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791. doi:10.1038/nrm1492

    Article  PubMed  CAS  Google Scholar 

  7. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772. doi:10.1038/nrc1716

    Article  PubMed  CAS  Google Scholar 

  8. Moser C, Lang SA, Stoeltzing O (2009) Heat-shock protein 90 (Hsp90) as a molecular target for therapy of gastrointestinal cancer. Anticancer Res 29:2031–2042

    PubMed  CAS  Google Scholar 

  9. Reikvam H, Ersvaer E, Bruserud O (2009) Heat shock protein 90—a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 9:761–776

    Article  PubMed  CAS  Google Scholar 

  10. Hwang M, Moretti L, Lu B (2009) HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr Med Chem 16:3081–3092

    Article  PubMed  CAS  Google Scholar 

  11. Fedier A, Stuedii A, Fink D (2005) Presence of MLH1 protein aggravates the potential of the HSP90 inhibitor radicicol to sensitize tumor cells to cisplatin. Int J Oncol 27:1697–1705

    PubMed  CAS  Google Scholar 

  12. Ohba S, Hirose Y, Yoshida K, Yazaki T, Kawase T (2010) Inhibition of 90-kD heat shock protein potentiates the cytotoxicity of chemotherapeutic agents in human glioma cells. J Neurosurg 112:33–42. doi:10.3171/2009.3.JNS081146

    Article  PubMed  CAS  Google Scholar 

  13. Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer Suppl 1:S125–S135. doi:10.1677/erc.1.01324

    Article  Google Scholar 

  14. Sano M (2001) Radicicol and geldanamycin prevents neurotoxic effects of anti-cancer drugs on cultured embryonic sensory neurons. Neuropharmacology 40:947–953. doi:10.1016/S0028-3908(01)00018-1

    Article  PubMed  CAS  Google Scholar 

  15. Sohn MJ, Noh HJ, Yoo ID, Kim WG (2007) Protective effect of radicicol against LPS/IFN-γ-induced neuronal cell death in rat cortical neuron-glia cultures. Life Sci 80:1706–1712. doi:10.1016/j.lfs.2007.01.054

    Article  PubMed  CAS  Google Scholar 

  16. Högberg T, Glimelius B, Nygren P (2001) A systematic overview of chemotherapy effects in ovarian cancer. Acta Oncol 40:340–360

    Article  PubMed  Google Scholar 

  17. Bookman MA (2003) Developmental chemotherapy and management of recurrent ovarian cancer. J Clin Oncol 21:149s–167s. doi:10.1200/JCO.2003.02.553

    Article  PubMed  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  19. Dai Y, Liu M, Tang W, Li Y, Lian J, Lawrence TS, Xu L (2009) A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-κB. BMC Cancer 9:392. doi:10.1186/1471-2407-9-392

    Article  PubMed  Google Scholar 

  20. Huang S, Okumura K, Sinicrope FA (2009) BH3 mimetic obatoclax enhances TRAIL-mediated apoptosis in human pancreatic cancer cells. Clin Cancer Res 15:150–159. doi:10.1158/1078-0432.CCR-08-1575

    Article  PubMed  CAS  Google Scholar 

  21. Andrisano V, Ballardini R, Hrelia P, Cameli N, Tosti A, Gotti R, Cavrini V (2001) Studies on the photostability and in vitro phototoxicity of labetalol. Eur J Pharm Sci 12:495–504. doi:10.1016/S0928-0987(00)00218-9

    Article  PubMed  CAS  Google Scholar 

  22. Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte-Hermann R (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β1. Proc Natl Acad Sci USA 89:5408–5412

    Article  PubMed  CAS  Google Scholar 

  23. Wu H, Rao GN, Dai B, Singh P (2000) Autocrine gastrins in colon cancer cells up-regulate cytochrome c oxidase Vb and down-regulate efflux of cytochrome c and activation of caspase-8. J Biol Chem 275:32491–32498. doi:10.1074/jbc.M002458200

    Article  PubMed  CAS  Google Scholar 

  24. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, Pais de Barros JP, Laubriet A, Gambert P, Lizard G, Néel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905. doi:10.1038/sj.cdd.4401434

    Article  PubMed  CAS  Google Scholar 

  25. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002. doi:10.1038/sj.cdd.4401908

    Article  PubMed  CAS  Google Scholar 

  26. Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Pharmacol 147:239–248. doi:10.1038/sj.bjp.0706556

    Article  PubMed  CAS  Google Scholar 

  27. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729. doi:10.1016/S1470-2045(03)01277-4

    Article  PubMed  CAS  Google Scholar 

  28. MacFarlane M (2003) TRAIL-induced signaling and apoptosis. Toxicol Lett 139:89–97. doi:10.1016/S0378-4274(02)00422-8

    Article  PubMed  CAS  Google Scholar 

  29. Czabotar PE, Colman PM, Huang DC (2009) Bax activation by Bim? Cell Death Differ 16:1187–1191. doi:10.1038/cdd.2009.83

    Article  PubMed  CAS  Google Scholar 

  30. Camins A, Pallas M, Silvestre JS (2008) Apoptotic mechanisms involved in neurodegenerative diseases: experimental and therapeutic approaches. Methods Fin Exp Clin Pharmacol 30:43–65. doi:10.1358/mf.2008.30.1.1090962

    Article  CAS  Google Scholar 

  31. Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553. doi:10.1007/s00280-005-0111-7

    Article  PubMed  CAS  Google Scholar 

  32. Borutaite V (2010) Mitochondria as decision-makers in cell death. Environ Mol Mutagen 51:406–416. doi:10.1002/em.20564

    PubMed  CAS  Google Scholar 

  33. Wiman KG (2006) Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 13:921–926. doi:10.1038/sj.cdd.4401921

    Article  PubMed  CAS  Google Scholar 

  34. Chen F, Wang W, El-Deiry WS (2010) Current strategies to target p53 in cancer. Biochem Pharmacol 80:724–730. doi:10.1016/j.bcp.2010.04.031

    Article  PubMed  CAS  Google Scholar 

  35. Zhivotovsky B, Orrenius S (2010) Cell death mechanisms: cross-talk and role in disease. Exp Cell Res 316:1374–1383. doi:10.1016/j.yexcr.2010.02.037

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A085138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.J., Lee, S.A., Myung, S.C. et al. Radicicol, an inhibitor of Hsp90, enhances TRAIL-induced apoptosis in human epithelial ovarian carcinoma cells by promoting activation of apoptosis-related proteins. Mol Cell Biochem 359, 33–43 (2012). https://doi.org/10.1007/s11010-011-0997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0997-9

Keywords

Navigation