Molecular and Cellular Biochemistry

, Volume 357, Issue 1–2, pp 415–422 | Cite as

ARF triggers cell G1 arrest by a P53 independent ERK pathway



In this study, in order to investigate the p53-independent function of p14ARF, we established p14ARF-inducible clones in the p53-deficient HCT cell line using the doxycycline-inducible expression system. A strong cell growth inhibition and G1/S arrest were observed after doxycycline induction in p53-/-HCT cells, and the cells also exhibited an obvious decrease of DNA synthesis. We further examined if the MEK/ERK pathway is involved in the G1 arrest induced by p14ARF in p53-/-HCT cells. The results indicate that ERK1/2 and p21 were activated upon p14ARF induction. Totally, the functional roles of ERK and p21 for ARF in p53-independent tumor suppression were demonstrated.


ARF P53 G1 arrest ERK 



Extracellular signal-regulated kinase


MARK/ERK kinase 1


Mitogen-activated protein kinase


Murine double minute 2


Propidium iodide



The authors thank Dr. Damu Tang of the McMaster University for providing the p53-/-HCT 116 cells and the dominant-negative MEK1 (MEK1K97M) plasmid. This study was funded by grants 30670813 of the Natural Science Foundation of the People’s Republic of China.


  1. 1.
    Dominguez-Brauer C, Brauer PM, Chen YJ, Pimkina J, Raychaudhuri P (2010) Tumor suppression by ARF: gatekeeper and caretaker. Cell Cycle 9:86–89PubMedCrossRefGoogle Scholar
  2. 2.
    Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99PubMedCrossRefGoogle Scholar
  3. 3.
    Sharpless NE, Ramsey MR, Balasubramanian P, Castrillon DH, DePinho RA (2004) The differential impact of p16INK4a or p19ARF deficiency on cell growth and tumorigenesis. Oncogene 23:379–385PubMedCrossRefGoogle Scholar
  4. 4.
    Kamijo T, Bodner S, Van de Kamp E, Randle DH, Sherr CJ (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59:2217–2222PubMedGoogle Scholar
  5. 5.
    Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659PubMedCrossRefGoogle Scholar
  6. 6.
    Matheu A, Maraver A, Serrano M (2008) The Arf/p53 pathway in cancer and aging. Cancer Res 68:6031–6034PubMedCrossRefGoogle Scholar
  7. 7.
    Rozenblum E, Schutte M, Goggins M, Hahn SA, Panzer S, Zahurak M et al (1997) Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 57:1731–1734PubMedGoogle Scholar
  8. 8.
    Moore LS, Venkatachalam H, Vogel JC, Watt JC, Wu CL, Steinman H et al (2003) Cooperativity of p19ARF, MDM2, and p53 in murine tumorigenesis. Oncogene 22:7831–7837PubMedCrossRefGoogle Scholar
  9. 9.
    Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF et al (2000) p53-independent functions of the p19ARF tumor suppressor. Genes Dev 14:2358–2365PubMedCrossRefGoogle Scholar
  10. 10.
    Kelly-Spratt KS, Gurley KE, Yasui Y, Kemp CJ (2004) P19Arf suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways. PLoS Biol 2:1138–1149CrossRefGoogle Scholar
  11. 11.
    Yarbrough WG, Bessho M, Zanation A, Bisi JE, Xiong Y (2002) Human tumor suppressor ARF impedes S-phase progression independent of p53. Cancer Res 62:1171–1177PubMedGoogle Scholar
  12. 12.
    Datta A, Nag A, Raychaudhuri P (2002) Differential regulation of E2F1, DP1, and the E2F1/DP1 complex by ARF. Mol Cell Biol 22:8398–8408PubMedCrossRefGoogle Scholar
  13. 13.
    Datta A, Nag A, Pan W, Hay N, Gartel AL, Colamonici O et al (2004) Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc. J Biol Chem 279:36698–36707PubMedCrossRefGoogle Scholar
  14. 14.
    Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al (2003) Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12:1151–1164PubMedCrossRefGoogle Scholar
  15. 15.
    Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW et al (2005) Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25:1258–1271PubMedCrossRefGoogle Scholar
  16. 16.
    Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8:1168–1175PubMedCrossRefGoogle Scholar
  17. 17.
    Meloche S, Pouysségur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:3227–3239PubMedCrossRefGoogle Scholar
  18. 18.
    Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M (1997) Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 17:5598–5611PubMedGoogle Scholar
  19. 19.
    Eymin B, Claverie P, Salon C, Brambilla C, Brambilla E, Gazzeri S (2006) P14ARF triggers G2 arrest through ERK-mediated Cdc25C phosphorylation, ubiquitination and proteasomal degradation. Cell Cycle 5:759–765PubMedCrossRefGoogle Scholar
  20. 20.
    Wu D, Ingram A, Lahti JH, Mazza B, Grenet J, Kapoor A et al (2002) Apoptotic release of histones from nucleosomes. J Biol Chem 277:12001–12008PubMedCrossRefGoogle Scholar
  21. 21.
    Li Y, Wu D, Chen B, Ingram AJ, He L, Liu L et al (2004) ATM activity contributes to the tumor suppressing functions of p14ARF. Oncogene 23:7355–7365PubMedCrossRefGoogle Scholar
  22. 22.
    Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B et al (2002) ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 277:12710–12717PubMedCrossRefGoogle Scholar
  23. 23.
    Kovi RC, Paliwal S, Pande S, Grossman SR (2010) An ARF/CtBP2 complex regulates BH3-only gene expression and p53-independent apoptosis. Cell Death Differ 17:513–521PubMedCrossRefGoogle Scholar
  24. 24.
    Li Y, He L, Bruce A, Parihar K, Ingram A, Liu L, Tang D (2006) P14ARF inhibits the growth of p53 deficient cells in a cell-specific manner. Biochim Biophys Acta 1763:787–796PubMedCrossRefGoogle Scholar
  25. 25.
    Paliwal S, Pande S, Kovi RC, Sharpless NE, Bardeesy N, Grossman SR (2006) Targeting of C-terminal binding protein (CtBP) by ARF results in p53-independent apoptosis. Mol Cell Biol 26:2360–2372PubMedCrossRefGoogle Scholar
  26. 26.
    Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121:1071–1083PubMedCrossRefGoogle Scholar
  27. 27.
    Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19:238–245PubMedCrossRefGoogle Scholar
  28. 28.
    Liebermann DA, Hoffman B, Vesely D (2007) P53 induced growth arrest versus apoptosis and its modulation by survival cytokines. Cell Cycle 6:166–170PubMedCrossRefGoogle Scholar
  29. 29.
    Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A et al (2002) P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. Eur Mol Biol Organ J 21:5635–5644Google Scholar
  30. 30.
    Wu D, Chen B, Parihar K, He L, Fan C, Zhang J et al (2006) ERK activity facilitates activation of the S-phase DNA damage checkpoint by modulating ATR function. Oncogene 25:1153–1164PubMedCrossRefGoogle Scholar
  31. 31.
    Malmlöf M, Roudier E, Högberg J, Stenius U (2007) MEK-ERK-mediated phosphorylation of MDM2 at Ser-166 in hepatocytes. MDM2 is activated in response to inhibited Akt signaling. J Biol Chem 282:2288–2296PubMedCrossRefGoogle Scholar
  32. 32.
    Mogila V, Xia F, Li WX (2006) An intrinsic cell cycle checkpoint pathway mediated by MEK and ERK in drosophila. Dev Cell 11:575–582PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Gastrointestinal SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science & TechnologyWuhanPeople’s Republic of China
  2. 2.Department of BiochemistryBasic Medical College of Wuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations