Advertisement

Molecular and Cellular Biochemistry

, Volume 357, Issue 1–2, pp 151–161 | Cite as

Urinary-type plasminogen activator receptor (uPAR) modulates oral cancer cell behavior with alteration in p130cas

  • Zonggao Shi
  • Yueying Liu
  • Jeffrey J. Johnson
  • M. Sharon Stack
Article

Abstract

Oral cavity cancer is among the most frequently diagnosed cancers worldwide and urinary-type plasminogen activator receptor (uPAR) is clinically associated with more invasive tumors and enhanced lymph node metastasis. We seek to further elucidate the mechanism of by which uPAR promotes cell aggressiveness in the unique context of oral squamous cell carcinoma (OSCC). The contribution of uPAR expression to aggressive cellular behavior of OSCC was examined using in vitro cellular models wherein the expression of uPAR was manipulated and in a human OSCC tissue microarray. Results show altered adhesion, motility, and invasion in cells that overexpress uPAR relative to vector control cells. Distinct alterations of focal adhesion protein expression and phosphorylation, including p130cas and paxillin were observed, suggestive of enhanced focal adhesion turnover. Immunohistochemical analysis of microarrayed human OSCC revealed a significant correlation between uPAR and p130cas expression. The non-receptor protein tyrosine kinase c-Src was responsible for the phosphorylation of p130cas in response to uPAR/α3β1/laminin-5 engagement. Further downstream, the Rho family GTPase Cdc42, but not Rac1, was activated, suggesting a pathway leading to actin reorganization, filopodial protrusion and enhanced motility in uPAR overexpressing oral cancer cells. These data shed light on a molecular mechanism whereby acquisition of uPAR expression may modulate OSCC invasive activity through alteration of focal adhesion dynamics.

Keywords

Carcinoma of oral cavity Urinary-type plasminogen activator receptor uPAR p130cas Paxillin Metastasis 

Notes

Acknowledgments

This work was supported by Research Grant RO1CA085870 from the National Institutes of Health/National Cancer Institute (to MSS). We are grateful to Dr. Suzanne Westfall for critical reading of the manuscript.

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300PubMedCrossRefGoogle Scholar
  3. 3.
    Gorsky M, Epstein JB, Oakley C, Le ND, Hay J, Stevenson-Moore P (2004) Carcinoma of the tongue: a case series analysis of clinical presentation, risk factors, staging, and outcome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98(5):546–552PubMedCrossRefGoogle Scholar
  4. 4.
    Shiboski CH, Schmidt BL, Jordan RC (2005) Tongue and tonsil carcinoma: increasing trends in the U.S. population ages 20–44 years. Cancer 103(9):1843–1849PubMedCrossRefGoogle Scholar
  5. 5.
    Zhen W, Karnell LH, Hoffman HT, Funk GF, Buatti JM, Menck HR (2004) The National Cancer Data Base report on squamous cell carcinoma of the base of tongue. Head Neck 26(8):660–674PubMedCrossRefGoogle Scholar
  6. 6.
    Sano D, Myers JN (2007) Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev 26(3–4):645–662PubMedCrossRefGoogle Scholar
  7. 7.
    Macfarlane GJ, Boyle P, Evstifeeva TV, Robertson C, Scully C (1994) Rising trends of oral cancer mortality among males worldwide: the return of an old public health problem. Cancer Causes Control 5(3):259–265PubMedCrossRefGoogle Scholar
  8. 8.
    Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3(12):932–943PubMedCrossRefGoogle Scholar
  9. 9.
    Shi Z, Stack MS (2007) Urinary-type plasminogen activator (uPA) and its receptor (uPAR) in squamous cell carcinoma of the oral cavity. Biochem J 407(2):153–159PubMedCrossRefGoogle Scholar
  10. 10.
    Lindberg P, Larsson A, Nielsen BS (2006) Expression of plasminogen activator inhibitor-1, urokinase receptor and laminin gamma-2 chain is an early coordinated event in incipient oral squamous cell carcinoma. Int J Cancer 118(12):2948–2956PubMedCrossRefGoogle Scholar
  11. 11.
    Nozaki S, Endo Y, Kawashiri S, Nakagawa K, Yamamoto E, Yonemura Y, Sasaki T (1998) Immunohistochemical localization of a urokinase-type plasminogen activator system in squamous cell carcinoma of the oral cavity: association with mode of invasion and lymph node metastasis. Oral Oncol 34(1):58–62PubMedCrossRefGoogle Scholar
  12. 12.
    Yasuda T, Sakata Y, Kitamura K, Morita M, Ishida T (1997) Localization of plasminogen activators and their inhibitor in squamous cell carcinomas of the head and neck. Head Neck 19(7):611–616PubMedCrossRefGoogle Scholar
  13. 13.
    Hundsdorfer B, Zeilhofer HF, Bock KP, Dettmar P, Schmitt M, Kolk A, Pautke C, Horch HH (2005) Tumour-associated urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in normal and neoplastic tissues of patients with squamous cell cancer of the oral cavity—clinical relevance and prognostic value. J Craniomaxillofac Surg 33(3):191–196PubMedCrossRefGoogle Scholar
  14. 14.
    Hillig T, Engelholm LH, Ingvarsen S, Madsen DH, Gardsvoll H, Larsen JK, Ploug M, Dano K, Kjoller L, Behrendt N (2008) A composite role of vitronectin and urokinase in the modulation of cell morphology upon expression of the urokinase receptor. J Biol Chem 283(22):15217–15223PubMedCrossRefGoogle Scholar
  15. 15.
    Tang CH, Wei Y (2008) The urokinase receptor and integrins in cancer progression. Cell Mol Life Sci 65(12):1916–1932PubMedCrossRefGoogle Scholar
  16. 16.
    Ghosh S, Brown R, Jones JC, Ellerbroek SM, Stack MS (2000) Urinary-type plasminogen activator (uPA) expression and uPA receptor localization are regulated by alpha 3beta 1 integrin in oral keratinocytes. J Biol Chem 275(31):23869–23876PubMedCrossRefGoogle Scholar
  17. 17.
    Ghosh S, Johnson JJ, Sen R, Mukhopadhyay S, Liu Y, Zhang F, Wei Y, Chapman HA, Stack MS (2006) Functional relevance of urinary-type plasminogen activator receptor-alpha3beta1 integrin association in proteinase regulatory pathways. J Biol Chem 281(19):13021–13029PubMedCrossRefGoogle Scholar
  18. 18.
    Ghosh S, Munshi HG, Sen R, Linz-McGillem LA, Goldman RD, Lorch J, Green KJ, Jones JC, Stack MS (2002) Loss of adhesion-regulated proteinase production is correlated with invasive activity in oral squamous cell carcinoma. Cancer 95(12):2524–2533PubMedCrossRefGoogle Scholar
  19. 19.
    Ghosh S, Koblinski J, Johnson J, Liu Y, Ericsson A, Davis JW, Shi Z, Ravosa MJ, Crawford S, Frazier S, Stack MS (2010) Urinary-type plasminogen activator receptor/alpha 3 beta 1 integrin signaling, altered gene expression, and oral tumor progression. Mol Cancer Res 8(2):145–158PubMedCrossRefGoogle Scholar
  20. 20.
    Lyons AJ, Jones J (2007) Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg 36(8):671–679PubMedCrossRefGoogle Scholar
  21. 21.
    Baker SE, Hopkinson SB, Fitchmun M, Andreason GL, Frasier F, Plopper G, Quaranta V, Jones JC (1996) Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci 109(Pt 10):2509–2520PubMedGoogle Scholar
  22. 22.
    Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA (2001) Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell 12(10):2975–2986PubMedGoogle Scholar
  23. 23.
    Chen CS, Alonso JL, Ostuni E, Whitesides GM, Ingber DE (2003) Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun 307(2):355–361PubMedCrossRefGoogle Scholar
  24. 24.
    DeMali KA, Wennerberg K, Burridge K (2003) Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 15(5):572–582PubMedCrossRefGoogle Scholar
  25. 25.
    Wozniak MA, Modzelewska K, Kwong L, Keely PJ (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692(2–3):103–119PubMedCrossRefGoogle Scholar
  26. 26.
    Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell–matrix adhesions. J Cell Sci 114(Pt 20):3583–3590PubMedGoogle Scholar
  27. 27.
    Petit V, Boyer B, Lentz D, Turner CE, Thiery JP, Valles AM (2000) Phosphorylation of tyrosine residues 31 and 118 on paxillin regulates cell migration through an association with CRK in NBT-II cells. J Cell Biol 148(5):957–970PubMedCrossRefGoogle Scholar
  28. 28.
    Brown MC, Turner CE (2004) Paxillin: adapting to change. Physiol Rev 84(4):1315–1339PubMedCrossRefGoogle Scholar
  29. 29.
    Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6(2):154–161PubMedCrossRefGoogle Scholar
  30. 30.
    Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28(1–2):35–49PubMedCrossRefGoogle Scholar
  31. 31.
    Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701PubMedCrossRefGoogle Scholar
  32. 32.
    D’Alessio S, Blasi F (2009) The urokinase receptor as an entertainer of signal transduction. Front Biosci 14:4575–4587PubMedCrossRefGoogle Scholar
  33. 33.
    Madsen CD, Ferraris GM, Andolfo A, Cunningham O, Sidenius N (2007) uPAR-induced cell adhesion and migration: vitronectin provides the key. J Cell Biol 177(5):927–939PubMedCrossRefGoogle Scholar
  34. 34.
    Ossowski L, Aguirre-Ghiso JA (2000) Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 12(5):613–620PubMedCrossRefGoogle Scholar
  35. 35.
    Liang X, Yang X, Tang Y, Zhou H, Liu X, Xiao L, Gao J, Mao Z (2008) RNAi-mediated downregulation of urokinase plasminogen activator receptor inhibits proliferation, adhesion, migration and invasion in oral cancer cells. Oral Oncol 44(12):1172–1180PubMedCrossRefGoogle Scholar
  36. 36.
    Yano H, Uchida H, Iwasaki T, Mukai M, Akedo H, Nakamura K, Hashimoto S, Sabe H (2000) Paxillin alpha and Crk-associated substrate exert opposing effects on cell migration and contact inhibition of growth through tyrosine phosphorylation. Proc Natl Acad Sci USA 97(16):9076–9081PubMedCrossRefGoogle Scholar
  37. 37.
    Nakamura K, Yano H, Uchida H, Hashimoto S, Schaefer E, Sabe H (2000) Tyrosine phosphorylation of paxillin alpha is involved in temporospatial regulation of paxillin-containing focal adhesion formation and F-actin organization in motile cells. J Biol Chem 275(35):27155–27164PubMedGoogle Scholar
  38. 38.
    Deakin NO, Turner CE (2008) Paxillin comes of age. J Cell Sci 121(Pt 15):2435–2444PubMedCrossRefGoogle Scholar
  39. 39.
    Panetti TS (2002) Tyrosine phosphorylation of paxillin, FAK, and p130CAS: effects on cell spreading and migration. Front Biosci 7:d143–d150PubMedCrossRefGoogle Scholar
  40. 40.
    Kjoller L, Hall A (2001) Rac mediates cytoskeletal rearrangements and increased cell motility induced by urokinase-type plasminogen activator receptor binding to vitronectin. J Cell Biol 152(6):1145–1157PubMedCrossRefGoogle Scholar
  41. 41.
    Choma DP, Milano V, Pumiglia KM, DiPersio CM (2007) Integrin alpha3beta1-dependent activation of FAK/Src regulates Rac1-mediated keratinocyte polarization on laminin-5. J Invest Dermatol 127(1):31–40PubMedCrossRefGoogle Scholar
  42. 42.
    Smith HW, Marra P, Marshall CJ (2008) uPAR promotes formation of the p130Cas-Crk complex to activate Rac through DOCK180. J Cell Biol 182(4):777–790PubMedCrossRefGoogle Scholar
  43. 43.
    Jo M, Takimoto S, Montel V, Gonias SL (2009) The urokinase receptor promotes cancer metastasis independently of urokinase-type plasminogen activator in mice. Am J Pathol 175(1):190–200PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Zonggao Shi
    • 1
  • Yueying Liu
    • 1
  • Jeffrey J. Johnson
    • 1
  • M. Sharon Stack
    • 1
    • 2
  1. 1.Department of Pathology and Anatomical SciencesUniversity of Missouri School of MedicineColumbiaUSA
  2. 2.Department of medical Pharmacology and PhysiologyUniversity of Missouri School of MedicineColumbiaUSA

Personalised recommendations