Molecular and Cellular Biochemistry

, Volume 352, Issue 1–2, pp 109–115 | Cite as

Oxidized phosphatidylcholine induces migration of bone marrow-derived mesenchymal stem cells through Krüppel-like factor 4-dependent mechanism

  • Sang Hun Shin
  • Hae Young Song
  • Min Young Kim
  • Eun Kyung Do
  • Jung Sub Lee
  • Jae Ho Kim


Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) and PAF-like oxidized phospholipids including 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) are generated upon LDL oxidation. The aim of this study was to evaluate the question of whether POVPC can regulate migration of human bone marrow-derived stem cells (hBMSCs) and to characterize signaling mechanisms involved in the POVPC-induced cell migration. POVPC treatment resulted in dose- and time-dependent increase of hBMSCs migration. Treatment of cells with BN52021, a specific antagonist of PAF receptor, completely blocked cell migration induced by not only PAF but also POVPC. Silencing of endogenous PAF receptor expression using PAF receptor-specific small interfering RNA resulted in significant attenuation of cell migration induced by PAF or POVPC. Both PAF and POVPC induced expression of Krüppel-like factor 4 (KLF4) in hBMSCs. POVPC- or PAF-induced cell migration was abrogated by small interfering RNA-mediated depletion of endogenous KLF4. These results suggest that PAF receptor plays a pivotal role in POVPC-induced migration of human BMSCs through PAF receptor-mediated expression of KLF4.


POVPC Platelet-activating factor Krüppel-like factor 4 Mesenchymal stem cells Migration 



Low density lipoprotein


Platelet-activating factor






PAF receptor


Vascular smooth muscle cells


Mesenchymal stem cells


Human bone marrow-derived MSCs


Reverse transcription-polymerase chain reaction


Small interfering RNA


Platelet-derived growth factor-BB



This research was supported by a program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0020274) and by the MRC program (2010-0001251).


  1. 1.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  2. 2.
    Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8:1211–1217PubMedCrossRefGoogle Scholar
  3. 3.
    Ishigaki Y, Oka Y, Katagiri H (2009) Circulating oxidized LDL: a biomarker and a pathogenic factor. Curr Opin Lipidol 20:363–369PubMedCrossRefGoogle Scholar
  4. 4.
    Leitinger N (2003) Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol 14:421–430PubMedCrossRefGoogle Scholar
  5. 5.
    Boullier A, Gillotte KL, Horkko S et al (2000) The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J Biol Chem 275:9163–9169PubMedCrossRefGoogle Scholar
  6. 6.
    Li R, Mouillesseaux KP, Montoya D et al (2006) Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC. Circ Res 98:642–650PubMedCrossRefGoogle Scholar
  7. 7.
    Pegorier S, Stengel D, Durand H et al (2006) Oxidized phospholipid: POVPC binds to platelet-activating-factor receptor on human macrophages. Implications in atherosclerosis. Atherosclerosis 188:433–443PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki T, Aizawa K, Matsumura T et al (2005) Vascular implications of the Kruppel-like family of transcription factors. Arterioscler Thromb Vasc Biol 25:1135–1141PubMedCrossRefGoogle Scholar
  9. 9.
    Ghaleb AM, Nandan MO, Chanchevalap S et al (2005) Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 15:92–96PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedCrossRefGoogle Scholar
  11. 11.
    Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49PubMedCrossRefGoogle Scholar
  12. 12.
    Pidkovka NA, Cherepanova OA, Yoshida T et al (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ Res 101:792–801PubMedCrossRefGoogle Scholar
  13. 13.
    Cherepanova OA, Pidkovka NA, Sarmento OF et al (2009) Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration. Circ Res 104:609–618PubMedCrossRefGoogle Scholar
  14. 14.
    Dang DT, Chen X, Feng J et al (2003) Overexpression of Kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene 22:3424–3430PubMedCrossRefGoogle Scholar
  15. 15.
    Yori JL, Johnson E, Zhou G et al (2010) Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem 285:16854–16863PubMedCrossRefGoogle Scholar
  16. 16.
    Wang C, Han M, Zhao XM et al (2008) Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem 144:313–321PubMedCrossRefGoogle Scholar
  17. 17.
    Chamberlain G, Fox J, Ashton B et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749PubMedCrossRefGoogle Scholar
  18. 18.
    Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902PubMedCrossRefGoogle Scholar
  19. 19.
    Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084PubMedCrossRefGoogle Scholar
  20. 20.
    Jeon ES, Park WS, Lee MJ et al (2008) A Rho kinase/myocardin-related transcription factor-A-dependent mechanism underlies the sphingosylphosphorylcholine-induced differentiation of mesenchymal stem cells into contractile smooth muscle cells. Circ Res 103:635–642PubMedCrossRefGoogle Scholar
  21. 21.
    Kinner B, Zaleskas JM, Spector M (2002) Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp Cell Res 278:72–83PubMedCrossRefGoogle Scholar
  22. 22.
    Wang D, Park JS, Chu JS et al (2004) Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor beta1 stimulation. J Biol Chem 279:43725–43734PubMedCrossRefGoogle Scholar
  23. 23.
    Farrington-Rock C, Crofts NJ, Doherty MJ et al (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110:2226–2232PubMedCrossRefGoogle Scholar
  24. 24.
    Hirschi KK, Goodell MA (2002) Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Ther 9:648–652PubMedCrossRefGoogle Scholar
  25. 25.
    Qian H, Yang Y, Li J et al (2007) The role of vascular stem cells in atherogenesis and post-angioplasty restenosis. Ageing Res Rev 6:109–127PubMedCrossRefGoogle Scholar
  26. 26.
    Shin SH, Song HY, Kim MY et al (2010) Platelet-activating factor receptor mediates oxidized low density lipoprotein-induced migration of bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 26:689–698PubMedCrossRefGoogle Scholar
  27. 27.
    Honda Z, Ishii S, Shimizu T (2002) Platelet-activating factor receptor. J Biochem 131:773–779PubMedGoogle Scholar
  28. 28.
    Stengel D, O’Neil C, Brocheriou I et al (2006) PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: functional implications in cell migration. Biochem Biophys Res Commun 346:693–699PubMedCrossRefGoogle Scholar
  29. 29.
    Lee MJ, Song HY, Kim MR et al (2007) Oncostatin M stimulates expression of stromal-derived factor-1 in human mesenchymal stem cells. Int J Biochem Cell Biol 39:650–659PubMedCrossRefGoogle Scholar
  30. 30.
    Law RE, Meehan WP, Xi XP et al (1996) Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest 98:1897–1905PubMedCrossRefGoogle Scholar
  31. 31.
    Liu Y, Sinha S, McDonald OG et al (2005) Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 280:9719–9727PubMedCrossRefGoogle Scholar
  32. 32.
    Heery JM, Kozak M, Stafforini DM et al (1995) Oxidatively modified LDL contains phospholipids with platelet-activating factor-like activity and stimulates the growth of smooth muscle cells. J Clin Invest 96:2322–2330PubMedCrossRefGoogle Scholar
  33. 33.
    Watson AD, Leitinger N, Navab M et al (1997) Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 272:13597–13607PubMedCrossRefGoogle Scholar
  34. 34.
    Chatterjee S, Berliner JA, Subbanagounder GG et al (2004) Identification of a biologically active component in minimally oxidized low density lipoprotein (MM-LDL) responsible for aortic smooth muscle cell proliferation. Glycoconj J 20:331–338PubMedCrossRefGoogle Scholar
  35. 35.
    Segre JA, Bauer C, Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22:356–360PubMedCrossRefGoogle Scholar
  36. 36.
    Swamynathan SK, Katz JP, Kaestner KH et al (2007) Conditional deletion of the mouse Klf4 gene results in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells. Mol Cell Biol 27:182–194PubMedCrossRefGoogle Scholar
  37. 37.
    Jiang J, Chan YS, Loh YH et al (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360PubMedCrossRefGoogle Scholar
  38. 38.
    Deaton RA, Gan Q, Owens GK (2009) Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotypic modulation of smooth muscle. Am J Physiol Heart Circ Physiol 296:H1027–H1037PubMedCrossRefGoogle Scholar
  39. 39.
    Spaeth E, Klopp A, Dembinski J et al (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15:730–738PubMedCrossRefGoogle Scholar
  40. 40.
    Dwyer RM, Potter-Beirne SM, Harrington KA et al (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13:5020–5027PubMedCrossRefGoogle Scholar
  41. 41.
    Ji JF, He BP, Dheen ST et al (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22:415–427PubMedCrossRefGoogle Scholar
  42. 42.
    Kang YJ, Jeon ES, Song HY et al (2005) Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 95:1135–1145PubMedCrossRefGoogle Scholar
  43. 43.
    Lee MJ, Jeon ES, Lee JS et al (2008) Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem 104:499–510PubMedCrossRefGoogle Scholar
  44. 44.
    Meriane M, Duhamel S, Lejeune L et al (2006) Cooperation of matrix metalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase signaling pathways is required for the sphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells. Stem Cells 24:2557–2565PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Sang Hun Shin
    • 1
    • 2
  • Hae Young Song
    • 1
    • 2
  • Min Young Kim
    • 1
    • 2
  • Eun Kyung Do
    • 1
    • 2
  • Jung Sub Lee
    • 3
  • Jae Ho Kim
    • 1
    • 2
  1. 1.Medical Research Center for Ischemic Tissue RegenerationPusan National UniversityYangsanRepublic of Korea
  2. 2.Department of Physiology, School of MedicinePusan National UniversityYangsanRepublic of Korea
  3. 3.Department of Orthopaedic Surgery, School of MedicinePusan National UniversityBusanRepublic of Korea

Personalised recommendations