Molecular and Cellular Biochemistry

, Volume 349, Issue 1–2, pp 195–204 | Cite as

Prolactin alters the mRNA expression of osteoblast-derived osteoclastogenic factors in osteoblast-like UMR106 cells

  • Kannikar Wongdee
  • Warut Tulalamba
  • Jirawan Thongbunchoo
  • Nateetip Krishnamra
  • Narattaphol Charoenphandhu


Prolactin (PRL) is known to participate in the lactation-induced maternal bone loss, presumably by inducing the release of receptor activator of nuclear factor-κB ligand (RANKL), a potent osteoclastogenic factor from osteoblasts. Since maternal bone resorption was too massive to be solely explained by RANKL and osteoclasts did not express PRL receptors (PRLR), the involvement of some other osteoblast-derived osteoclastogenic modulators was anticipated. Herein, the authors used quantitative real-time PCR to investigate the mRNA expressions of various osteoclastogenic factors in osteoblast-like UMR106 cells directly exposed to PRL for 48 h. These cells were found to express PRLR and respond to 300 ng/ml PRL by increasing RANKL mRNA expression. This PRL concentration (comparable to plasma PRL levels in lactation) also induced the upregulation of monocyte chemoattractant protein (MCP)-1, cyclooxygenase (Cox)-2, and ephrin-B1, whereas a higher concentration (500 ng/ml) was required to upregulate tumor necrosis factor (TNF)-α and interleukin (IL)-1. However, 100–500 ng/ml PRL affected neither the cell proliferation, the cell viability nor the mRNA expressions of macrophage colony-stimulating factor, IL-6, ephrin type-B receptor 4 and ephrin-B2. In conclusion, besides RANKL overexpression, PRL upregulated the expressions of other osteoclastogenic modulators, i.e., MCP-1, Cox-2, TNF-α, IL-1, and ephrin-B1, thus, further explaining how PRL induced bone loss in lactating mothers.


Hyperprolactinemia Osteoblast-derived factors Osteoclastogenesis Prolactin receptor RANKL Real-time PCR 



The authors thank Amporn Nuntapornsak and Wacharaporn Tiyasatkulkovit for their excellent technical assistance. This research was supported by grants from the Faculty of Science, Mahidol University (SCY52-02 and SCR53-06 to N. Charoenphandhu), the Faculty of Allied Health Sciences, Burapha University (to K. Wongdee), and Thailand Research Fund (RSA5180001 to N. Charoenphandhu).

Conflict of interest



  1. 1.
    Suntornsaratoon P, Wongdee K, Goswami S, Krishnamra N, Charoenphandhu N (2010) Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation. Am J Physiol Endocrinol Metab 299:E426–E436. doi: 10.1152/ajpendo.00134.2010 CrossRefPubMedGoogle Scholar
  2. 2.
    Charoenphandhu N, Wongdee K, Krishnamra N (2010) Is prolactin the cardinal calciotropic maternal hormone? Trends Endocrinol Metab 21:395–401. doi: 10.1016/j.tem.2010.02.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Clément-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, Bouchard B, Amling M, Gaillard-Kelly M, Binart N, Baron R, Kelly PA (1999) Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 140:96–105. doi: 10.1210/en.140.1.96 CrossRefPubMedGoogle Scholar
  4. 4.
    Coss D, Yang L, Kuo CB, Xu X, Luben RA, Walker AM (2000) Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am J Physiol Endocrinol Metab 279:E1216–E1225PubMedGoogle Scholar
  5. 5.
    Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, Suthiphongchai T, Krishnamra N (2008) Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor κB ligand/osteoprotegerin ratio. Bone 42:535–546. doi: 10.1016/j.bone.2007.11.008 CrossRefPubMedGoogle Scholar
  6. 6.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508. doi: 10.1126/science.289.5484.1504 CrossRefPubMedGoogle Scholar
  7. 7.
    Ardeshirpour L, Dann P, Adams DJ, Nelson T, VanHouten J, Horowitz MC, Wysolmerski JJ (2007) Weaning triggers a decrease in receptor activator of nuclear factor-κB ligand expression, widespread osteoclast apoptosis, and rapid recovery of bone mass after lactation in mice. Endocrinology 148:3875–3886. doi: 10.1210/en.2006-1467 CrossRefPubMedGoogle Scholar
  8. 8.
    Ragab AA, Nalepka JL, Bi Y, Greenfield EM (2002) Cytokines synergistically induce osteoclast differentiation: support by immortalized or normal calvarial cells. Am J Physiol Cell Physiol 283:C679–C687. doi: 10.1152/ajpcell.00421.2001 PubMedGoogle Scholar
  9. 9.
    Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y (2004) IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 15:49–60. doi: 10.1016/j.cytogfr.2003.10.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Han SY, Lee NK, Kim KH, Jang IW, Yim M, Kim JH, Lee WJ, Lee SY (2005) Transcriptional induction of cyclooxygenase-2 in osteoclast precursors is involved in RANKL-induced osteoclastogenesis. Blood 106:1240–1245. doi: 10.1182/blood-2004-12-4975 CrossRefPubMedGoogle Scholar
  11. 11.
    Kawashima M, Fujikawa Y, Itonaga I, Takita C, Tsumura H (2009) The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 19:192–198. doi: 10.1007/s10165-008-0149-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Matsuo K, Irie N (2008) Osteoclast–osteoblast communication. Arch Biochem Biophys 473:201–209. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  13. 13.
    Mundy GR, Elefteriou F (2006) Boning up on ephrin signaling. Cell 126:441–443. doi: 10.1016/j.cell.2006.07.015 CrossRefPubMedGoogle Scholar
  14. 14.
    Compagni A, Logan M, Klein R, Adams RH (2003) Control of skeletal patterning by EphrinB1–EphB interactions. Dev Cell 5:217–230. doi: 10.1016/S1534-5807(03)00198-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Twigg SR, Kan R, Babbs C, Bochukova EG, Robertson SP, Wall SA, Morriss-Kay GM, Wilkie AO (2004) Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci USA 101:8652–8657. doi: 10.1073/pnas.0402819101 CrossRefPubMedGoogle Scholar
  16. 16.
    Charoenphandhu N, Nakkrasae LI, Kraidith K, Teerapornpuntakit J, Thongchote K, Thongon N, Krishnamra N (2009) Two-step stimulation of intestinal Ca2+ absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. Am J Physiol Endocrinol Metab 297:E609–E619. doi: 10.1152/ajpendo.00347.2009 CrossRefPubMedGoogle Scholar
  17. 17.
    Partridge NC, Alcorn D, Michelangeli VP, Ryan G, Martin TJ (1983) Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin. Cancer Res 43:4308–4314PubMedGoogle Scholar
  18. 18.
    Nuntapornsak A, Wongdee K, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2010) Changes in the mRNA expression of osteoblast-related genes in response to β3-adrenergic agonist in UMR106 cells. Cell Biochem Funct 28:45–51. doi: 10.1002/cbf.1617 CrossRefPubMedGoogle Scholar
  19. 19.
    Li J, Jiang L, Liao G, Chen G, Liu Y, Wang J, Zheng Y, Luo S, Zhao Z (2009) Centrifugal forces within usually-used magnitude elicited a transitory and reversible change in proliferation and gene expression of osteoblastic cells UMR-106. Mol Biol Rep 36:299–305. doi: 10.1007/s11033-007-9179-y CrossRefPubMedGoogle Scholar
  20. 20.
    Wongdee K, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2010) Claudin expression in the bone-lining cells of female rats exposed to long-standing acidemia. Exp Mol Pathol 88:305–310. doi: 10.1016/j.yexmp.2009.12.005 CrossRefPubMedGoogle Scholar
  21. 21.
    Wongdee K, Teerapornpuntakit J, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2009) Gene expression profile of duodenal epithelial cells in response to chronic metabolic acidosis. Mol Cell Biochem 321:173–188. doi: 10.1007/s11010-008-9931-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Bataille-Simoneau N, Gerland K, Chappard D, Basle MF, Mercier L (1996) Expression of prolactin receptors in human osteosarcoma cells. Biochem Biophys Res Commun 229:323–328. doi: 10.1006/bbrc.1996.1800 CrossRefPubMedGoogle Scholar
  23. 23.
    Graves DT, Jiang Y, Valente AJ (1999) The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Front Biosci 4:D571–D580CrossRefPubMedGoogle Scholar
  24. 24.
    Jantarajit W, Thongon N, Pandaranandaka J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2007) Prolactin-stimulated transepithelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway. Am J Physiol Endocrinol Metab 293:E372–E384. doi: 10.1152/ajpendo.00142.2007 CrossRefPubMedGoogle Scholar
  25. 25.
    Manna PR, El-Hefnawy T, Kero J, Huhtaniemi IT (2001) Biphasic action of prolactin in the regulation of murine Leydig tumor cell functions. Endocrinology 142:308–318. doi: 10.1210/en.142.1.308 CrossRefPubMedGoogle Scholar
  26. 26.
    Bowman BM, Miller SC (2001) Skeletal adaptations during mammalian reproduction. J Musculoskelet Neuronal Interact 1:347–355PubMedGoogle Scholar
  27. 27.
    Kovacs CS (2005) Calcium and bone metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia 10:105–118. doi: 10.1007/s10911-005-5394-0 CrossRefPubMedGoogle Scholar
  28. 28.
    VanHouten JN, Wysolmerski JJ (2003) Low estrogen and high parathyroid hormone-related peptide levels contribute to accelerated bone resorption and bone loss in lactating mice. Endocrinology 144:5521–5529. doi: 10.1210/en.2003-0892 CrossRefPubMedGoogle Scholar
  29. 29.
    Naylor KE, Rogers A, Fraser RB, Hall V, Eastell R, Blumsohn A (2003) Serum osteoprotegerin as a determinant of bone metabolism in a longitudinal study of human pregnancy and lactation. J Clin Endocrinol Metab 88:5361–5365. doi: 10.1210/jc.2003-030486 CrossRefPubMedGoogle Scholar
  30. 30.
    Krishnamra N, Seemoung J (1996) Effects of acute and long-term administration of prolactin on bone 45Ca uptake, calcium deposit, and calcium resorption in weaned, young, and mature rats. Can J Physiol Pharmacol 74:1157–1165CrossRefPubMedGoogle Scholar
  31. 31.
    Thongchote K, Charoenphandhu N, Krishnamra N (2008) High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats. J Physiol Sci 58:39–45. doi: 10.2170/physiolsci.RP015007 CrossRefPubMedGoogle Scholar
  32. 32.
    Seriwatanachai D, Charoenphandhu N, Suthiphongchai T, Krishnamra N (2008) Prolactin decreases the expression ratio of receptor activator of nuclear factor κB ligand/osteoprotegerin in human fetal osteoblast cells. Cell Biol Int 32:1126–1135. doi: 10.1016/j.cellbi.2008.04.026 CrossRefPubMedGoogle Scholar
  33. 33.
    Charoenphandhu N, Teerapornpuntakit J, Methawasin M, Wongdee K, Thongchote K, Krishnamra N (2008) Prolactin decreases expression of Runx2, osteoprotegerin, and RANKL in primary osteoblasts derived from tibiae of adult female rats. Can J Physiol Pharmacol 86:240–248. doi: 10.1139/y08-037 CrossRefPubMedGoogle Scholar
  34. 34.
    Pacifici R (2008) Mechanisms of estrogen action in bone. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology, 3rd edn. Academic Press, San Diego, pp 921–934CrossRefGoogle Scholar
  35. 35.
    Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286CrossRefPubMedGoogle Scholar
  36. 36.
    Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A (2000) Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts. J Biol Chem 275:4858–4864. doi: 10.1074/jbc.275.7.4858 CrossRefPubMedGoogle Scholar
  37. 37.
    Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488. doi: 10.1172/JCI11176 CrossRefPubMedGoogle Scholar
  38. 38.
    Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–33106. doi: 10.1074/jbc.M611781200 CrossRefPubMedGoogle Scholar
  39. 39.
    Kim JH, Jin HM, Kim K, Song I, Youn BU, Matsuo K, Kim N (2009) The mechanism of osteoclast differentiation induced by IL-1. J Immunol 183:1862–1870. doi: 10.4049/jimmunol.0803007 CrossRefPubMedGoogle Scholar
  40. 40.
    Edwards CM, Mundy GR (2008) Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci 5:263–272PubMedGoogle Scholar
  41. 41.
    Kitamura T, Kabuyama Y, Kamataki A, Homma MK, Kobayashi H, Aota S, Kikuchi S, Homma Y (2008) Enhancement of lymphocyte migration and cytokine production by ephrinB1 system in rheumatoid arthritis. Am J Physiol Cell Physiol 294:C189–C196. doi: 10.1152/ajpcell.00314.2007 CrossRefPubMedGoogle Scholar
  42. 42.
    Yu G, Luo H, Wu Y, Wu J (2004) EphrinB1 is essential in T-cell-T-cell co-operation during T-cell activation. J Biol Chem 279:55531–55539. doi: 10.1074/jbc.M410814200 CrossRefPubMedGoogle Scholar
  43. 43.
    Döll F, Pfeilschifter J, Huwiler A (2007) Prolactin upregulates sphingosine kinase-1 expression and activity in the human breast cancer cell line MCF7 and triggers enhanced proliferation and migration. Endocr Relat Cancer 14:325–335. doi: 10.1677/ERC-06-0050 CrossRefPubMedGoogle Scholar
  44. 44.
    Jaroenporn S, Furuta C, Nagaoka K, Watanabe G, Taya K (2008) Comparative effects of prolactin versus ACTH, estradiol, progesterone, testosterone, and dihydrotestosterone on cortisol release and proliferation of the adrenocortical carcinoma cell line H295R. Endocrine 33:205–209. doi: 10.1007/s12020-008-9075-9 CrossRefPubMedGoogle Scholar
  45. 45.
    Binart N, Bachelot A, Bouilly J (2010) Impact of prolactin receptor isoforms on reproduction. Trends Endocrinol Metab 21:362–368. doi: 10.1016/j.tem.2010.01.008 CrossRefPubMedGoogle Scholar
  46. 46.
    Fuh G, Colosi P, Wood WI, Wells JA (1993) Mechanism-based design of prolactin receptor antagonists. J Biol Chem 268:5376–5381PubMedGoogle Scholar
  47. 47.
    Jahn GA, Daniel N, Jolivet G, Belair L, Bole-Feysot C, Kelly PA, Djiane J (1997) In vivo study of prolactin (PRL) intracellular signalling during lactogenesis in the rat: JAK/STAT pathway is activated by PRL in the mammary gland but not in the liver. Biol Reprod 57:894–900. doi: 10.1095/biolreprod57.4.894 CrossRefPubMedGoogle Scholar
  48. 48.
    Nagano M, Kelly PA (1994) Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction. J Biol Chem 269:13337–13345PubMedGoogle Scholar
  49. 49.
    Ricken AM, Traenkner A, Merkwitz C, Hummitzsch K, Grosche J, Spanel-Borowski K (2007) The short prolactin receptor predominates in endothelial cells of micro- and macrovascular origin. J Vasc Res 44:19–30. doi: 10.1159/000097892 CrossRefPubMedGoogle Scholar
  50. 50.
    Binart N, Imbert-Bolloré P, Baran N, Viglietta C, Kelly PA (2003) A short form of the prolactin (PRL) receptor is able to rescue mammopoiesis in heterozygous PRL receptor mice. Mol Endocrinol 17:1066–1074. doi: 10.1210/me.2002-0181 CrossRefPubMedGoogle Scholar
  51. 51.
    Gadd SL, Clevenger CV (2006) Ligand-independent dimerization of the human prolactin receptor isoforms: functional implications. Mol Endocrinol 20:2734–2746. doi: 10.1210/me.2006-0114 CrossRefPubMedGoogle Scholar
  52. 52.
    Seriwatanachai D, Krishnamra N, van Leeuwen JP (2009) Evidence for direct effects of prolactin on human osteoblasts: inhibition of cell growth and mineralization. J Cell Biochem 107:677–685. doi: 10.1002/jcb.22161 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Kannikar Wongdee
    • 1
    • 2
  • Warut Tulalamba
    • 1
    • 3
  • Jirawan Thongbunchoo
    • 1
  • Nateetip Krishnamra
    • 1
    • 4
  • Narattaphol Charoenphandhu
    • 1
    • 4
  1. 1.Consortium for Calcium and Bone Research (COCAB), Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Faculty of Allied Health SciencesBurapha UniversityChonburiThailand
  3. 3.Molecular Medicine Graduate Program, Faculty of ScienceMahidol UniversityBangkokThailand
  4. 4.Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations